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ABSTRACT

Ten morphometric di stances were neasured on 831 fish |arvae from
33 species and 18 famlies. Volunme was cal cul ated fromthese

neasurenents and the shape of all larvae with a volunme between 3
and 5 ul was conpared. It becane possible than to group the
| arvae around four characteristic shapes: eel-like |arvae, deep +

conpressed | arvae, fusiformlarvae, and tadpole-like |arvae. Net
drawi ngs were constructed fromthe average norphonetric distances
of each group. At a given volune, eel-like |larvae are about tw ce
as long as larvae fromother groups, which are of about the sane
| ength. Tadpole-like |arvae are wi der, and deep + conpressed

| arvae are deeper than the others. The dianeter of the eye is
larger and the lateral surface area is smaller in tadpol e-li ke

and in fusiformlarvae than in deep + conpressed and eel -like
larvae. The total surface area decreases for |arvae of the sane
volunme in the foll ow ng sequence: eel-like > deep + conpressed >

fusiform> tadpole-like. Volune is a better indicator for
conpar abl e stages of postl arval devel opnent than | ength,

especially when eel-like larvae |ike anchovy or herring are
conpared with other |larvae. As a hypothesis, two different growth
strategies are suggested: A Eel-like |arvae and deep +

conpressed |arvae grow slowy while feeding on abundant snall
prey items. Mrtality caused by predation is reduced by their
ability for burst escapes, as well as by their extreme |ength and
depth, respectively, whi ch nmakes them appear bigger than
suggested by their volune. Their energy saving swmng style
gives thema good potential to survive periods of starvation. B)
Fusiform and tadpol e-like |arvae represent fast-grow ng
predators. They invest energy to speed through the phase of high
vulnerability. |f, however, appropriate prey itens are scarce,
this strategy fails, and because of their high energy consunption
they wll soon reach the "point of no return".



1 Introduction

MOSER (1981) denonstrated for several fish species the striking
difference in body shape between |arvae and adults. Fish larvae
change their morphometric proportions during devel opnent and in
met anor phosis to obtain the shape of the adults (FUIMAN 1983).
The aimof this study is to examne different growth strategies
of fish larvae: Do they grow isonetrically or do they invest
tissue buil dup preferably into growth in length, width, or depth?
Thus, it would be desirable to conpare fish larvae with equa

cell numbers, as is done in the early stages of ontogeny. Cell
counts are not available, but dry weight of fish larvae is highly
correlated with DNA content (CLEMMESEN 1985). Dy weight itself
is highly correlated wth wet weight, which can be replaced by
volume. Volunme can be estinmated frommorphometrical measurenents
(WNBERG 1971). In this study, volunme wll be used to conpare

nmor phonetric proportions of various species of fish larvae.

Various authors have used descriptions such as eel-Ilike

fusiform tadpole-like, or deep + conpressed to describe groups
of fish larvae with simlar shapes (RUSSELL 1976; HALBEISEN 1988;
HUNTER 1981). This study attenpts to reproduce such a
classification on the basis of norphonetric measurements. The
ecol ogi cal inportance of shape in fish larvae is discussed.

Throughout this paper, the postlarval phase is defined as the
phase fromfirst feeding to metamorphosis.

2 Mterials and Methods

Most of the fish larvae used in this study were collected in the
Celtic Sea in April 1986 during a cruise of R'V "Posei don" (ROPKE
1989). A smaller part of the material was obtained from
collections of fish larvae at the Institut fur Meereskunde, Kiel.
Al'l larvae were stored in a buffered solution of 4 % formal dehyde
in freshwater for at least two years prior to neasurenent. Taxa,
sanple size, and length range are summarized in Table 1. Ten
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vari abl es were neasured for each larva using a video system
(FRCESE 1988, 1989, 1990): standard length, prepectoral |ength,
body width at pectorals, body width at anus, preorbital length
vertical diameter of eye, vertical body depth through center of
eye, vertical body depth at pectorals origin, vertical body depth
at anus.

Table 1: Species considered in this study, with acronyms, sanple
size and range of standard |ength

Speci es Acronym N Standard |ength

(Ln mm)
1. Cl upea harengus cl uphare 50 6.8 - 19.4
2. Argentina sphyrena ar gesphy 48 4.9 - 18.5
i} Benthosema ¢l aci al e bent gl ac 52 4.0 - 8.1
4. Merluccius merluccius merlucci 45 3.1 - 7.2
5. Gadiculus argent eus gadi ar ge 52 2.5- 1.3
6. Merlangius merlangus nmer | angi 52 2.3 - 8.0
7. Micromesistius poutassou M Crpout 30 3.5- 0.6
8. Pol | achi us pollachius pol | pol | 51 3.1 - 11.7
9. Trisopterus spec. trisspec 51 4.5 - 11.9
10. Molva molva molvmolv 38 3.2 - 6.7
11. Sconber scombrus scomscom 45 2.9 - 9.2
12. Callionymus spec. cal | spec 69 1.9 - 4.2
13. Triglidae triglida 37 4.2 - 15.2
14. Lepidorhombus boscii | epi bosc 41 3.5- 8.0
15. Lepidorhombus whiffiagonis | epi whif 43 3.5 - 12.7
16. Microchirus vari egatus m crvari 31 2.3- 7.0

Net drawi ngs of each larva were created, and the volunmes were
calculated (Fig. 3) (FRCESE 1990). Under the assunption that
vol ume can be replaced by weight, a theoretical |ength was
derived fromthe cal cul ated volune: The relationship between
wei ght and length in fish is described as:

W= a * LP
where W- weight, a = specific formfactor, L = length, and
b - allonetric coefficient. Isometric gromh of length with

wei ght occurs if b = 3. Setting the value a = 1 and b = 3 and
solving the equation for L leads to
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where L,, = an artifical length which grows isometrically with
wei ght and volune. This length can be used as reference paraneter
to check for allonmetric growth of the other norphol ogica

di stances including standard |ength.

3 Results

To conpare the body proportions of different species of fish

| arvae, all individuals with a calculated volume of 3 to 5 ul
were selected fromthe data; for every species the average depth
and wdth at pectorals were plotted against standard length (F g.
1 + 2). The plots reveal four clearly separated form groups of

| arvae: eel-like | arvae, deep + conpressed |arvae, tadpole-Ilike

| arvae, and fusiform | arvae.
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To obtain a visual inpression of the formtypes, net draw ngs
were constructed from the average morphometric di stances for each
group (Tab. 2 and Fig. 3). Fromthese data the follow ng
generalizations were derived: eel-like |larvae are about tw ce as
long as the others, which are of about the same |ength. Tadpol e-
like larvae are significantly W der and deep + conpressed |arvae
are significantly deeper than the others. The dianeter of the eye
IS significantly larger and the lateral surface area is signifi-
cantly smaller in tadpole-like and fusiformlarvae than in deep +

conpressed and eel-like larvae (nedian test, 95% confidence
limit). The total surface area decreases in the follow ng
sequence: eel-like > deep + conpressed > fusiform > tadpole-like.
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Figure 3: Shapes of fish larvae with a volune of 3 - 5 pl. The
rectangl es represent the cross-section at the pectorals.

To obtain an inpression of the variance within the form groups,
standard length and depth and width at pectorals were plotted
against Ly, (Filg. 4 - 7).
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4 Discussion

4.1 Length or volunme as indicator for stage of development?

Morphological, physiol ogical and ethol ogi cal characters of fish
| arvae change considerably in the course of |arval devel opnment
(BLAXTER 1986). It is very inportant to base a conparison of
these characters between different species on |arvae of the sane
stage of devel opnent. Traditionally, standard length or tota

| ength have been used to conpare fish larvae, but fish |arvae of
the same length may be in conpletely different stages of

devel opnment: VWile in Cupea harengus first dorsal fin rays only
begin to develop at a length of 14 mm Sconber scombrus enters
nmet anor phosis at that length with all fins well devel oped
(RUSSELL 1976). Conparing a 20 mmherring wth a 20 nmm nackere
woul d nmean to conpare a postlarva with a juvenile.

Table 3: Length and cal cul ated volune at first feeding of
selected fish larvae after RUSSELL (1976) and FRCESE (1990)

Speci es Length Volume
mm Coul
Cl upea harengus 8 - 10 0.70
Argentina sphyrena 8 - 8.5 0. 82
Sconber sconbrus 4.5 0. 65
Merluccius merluccius 4.0 0. 68
Microchirus variegatus 4.0 0.74
Callionymus lyra 2.3 0.22

As deducted above, volunme is proposed as a better estimator for
simlar stages of devel opnment of postlarvae. Table 3 shows that

at first feeding, Qupea harengus and Argentina sphyrena, the two
nmenbers of the eel-like group, are about twice as |ong as Sconber
sconbrus, Merluccius merluccius, and M crochirus vari egatus,
whereas the cal culated volune of these five species is simlar.
Wil e these results suggest that fish larvae of the North Sea and
adj acent waters have different lengths, but simlar volunes at
the tinme of first feeding, there is an obvious exception to the
rule: Callionynus Iyra is characterized by a very small |ength at



the time of yolk absorbtion (RUSSELL 1976), and also has a very
smal | vol une.

The unsuitability of length as an indicator of devel opnental
stage is also denonstrated by the follow ng facts:

- At hatching, the first marked stage of |arval devel opnent,
length for the eel-like Clupeidae listed in FaHAY (1983)
ranges from 2.4 to 10 nm conpared to 1.4 to 5.7 mmfor the
fusi form Gadi dae. The fusiform Sconmber japonicus neasures
about 3.5 nm at hatching, whereas the eel-like Engraulis
mordax measure about 5 to 5.5 nm (SCHUVANN 1965).

- At the tine of first feeding, the second marked stage of
devel oprment, the eel-like Oupeidae listed in FAHAY (1983)
range from 5.8 to 8 nmm conpared to the fusiform or tadpol e-
i ke Gadi dae, which range from 3.6 to 5 nm

= At metamorphosis, the last marked stage of |arval
devel oprment, the fusiform Sconber japonicus nmeasures 14.5 mm
whereas the eel-like Engraulis nordax nmeasures 32 nm (HUNTER
1980) . '

- HEWTT (1981) shows that anchovy are about twice as long as
mackerel throughout the postlarval phase (Fig. 8).



{Qrehn}

LENGTH (mm)

(hatch) AGE (daoys)

Figure 8: Gowh in length over time for Engraulis mordax and
Sconber japonicus (after HEWTT 1981).

If volune is a better indicator for conparable stages of |arva
devel opnent, then sone results fromthe literature will have to
be revised. For exanple, BLAXTER (1986, page 104) conpares

crui sing speeds of 8 species of fish larvae over length (Fig. 9,
A), showing that l[arvae of the eel-like group (C upea harengus
harengus, C upea harengus pallasi, Coregonus clupeaformis,
Engraulis nordax) swimnore slowy than |arvae of the other
groups (Micropterus salmoides, Perca flavescens, Pl euronectes

pl at essa, Sconber japonicus, Stizostedion vitreum vitreum) at al
stages of devel opnent (see al so HUNTER, 1981). However, when
anchovy and herring are plotted over a second X-axis that has
been corrected by a factor of 0.5, thus conparing, e.g., an 8 mm
fusiformlarvae with a 16 mmeel-like larvae (Fig. 9, B), it
turns out that there is no renmarkable difference in cruising
speed in the first half of the postlarval phase. It is only in
the second half of the postlarval phase that cruising speed of
anchovy and herring is slower. This result is in good accordance
with WEBB and WEIHS (1986), who expect an advantage in cruising
speed for thunniform larvae only after differentiation of the
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caudal fin. BALON (1975) explicitly devides the postlarval phase
into a period before and a period after the devel opnent of fin

rays.
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Anot her exanple is shown in figure 10 A in which nmouth width is
plotted over length for six species of fish larvae (HUNTER 1981).
The figure suggests that the eel-Iike anchovys have a snaller
nmouth width than the other species, but a correction of the x-
axis for anchovys by the factor 0.5 |eaves no significant

difference in mouth width between the eel-like |arvae and the
others.
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In summary it appears that volune rather than |length should be
used as indicator of postlarval development. This holds
especially true when eel-like larvae |ike anchovy or herring are
conpared with other |arvae.

4.2 Qowh strategies of fish |arvae: The ecol ogi cal inportance
of shape

In the context of this study, growh strategy is defined as the
specific pattern of allometric or isonetric growh of the

morphometric di stances neasured, resulting in a specific shape of
t he body.

The results of this study suggest that there is no random
assortment of body shapes in different species. Instead, fish

| arvae can be grouped into a few characteristic shapes: eel-like
| arvae (e.g. clupeids and anchovys), deep + conpressed | arvae
(e.g. flatfish), tadpole-like larvae (e.g. Callionymidae,
Merlucciidae, and sone Gadidae), and fusiform|larvae (e.g.
Scombridae and nost Gadidae). Figures 4 - 7 show little variance
for the 3 to 7 species included in each of these groups.

| nportant characteristics related to body form such as sw nm ng
and feedi ng behaviour should be simlar within a group. If this
assunption is generalized, then characteristics identified in
some nenbers of the group may be regarded as a common feature of

all. An analysis of the literature leads to the conclusion that
fish larvae may be grouped into two categories with simlar
features: A) eel-like |larvae and deep + conpressed | arvae, and

B) tadpole-like larvae and fusiforml arvae:

A Eel-like and deep + conpressed | arvae

Eel -1i ke and deep + conpressed |arvae have |arge surface areas
and small eyes. Most of them look very different fromthe adults.
They swmnore slowy in the second half of the postlarval phase
than other larvae (Fig. 9), but they are capable of explosive

SwW ming bursts (BLAXTER 1986, WEBB and WEIHS 1986, ROSENTHAL and
HEMPEL 1970) which are advantageous for attack and escape (WEBB



and OCORCLLA 1981; BLAXTER and BATTY 1985). Eel-like |arvae have
nmaneuvering problens and do not attack the same prey twce
(BLAXTER and STAINES 1971), which could explain why they prefer
smal | prey organi sms (HUNTER 1981) despite having a nouth w dth
simlar to that of the other larvae (Fig. 10). In spite of two
reports fromthe |aboratory (BROANELL 1984, Q ESTAD 1985), there
is no indication of in situ cannibalismor piscivory for the
postl arvae of these groups. HUNTER (1981, page 41) gives the
follow ng description of their feeding behaviour: "Upon sighting
a prey, a clupeoid larva forns a sinuous posture and advances
towards the prey by sculling the pectoral fins and undulating the
finfold while naintaining the body in the S posture. Wen the
prey is a short distance fromthe snout, the larva opens its
nmout h, straightens its body to drive forward, and engulfs the
prey." A simlar feeding behaviour is reported for deep +
conpressed | arvae (RILEY 1966, HOUDE 1972). The larvae of this
group do not sw m continuously, but performa constant change
bet ween active swinmm ng and feedi ng and passive gliding
(ROSENTHAL and HEMPEL 1970, RYLAND 1963, SCHUMANN 1965, HUNTER
1972). This is regarded as energetically advantageous (VLYMEN
1974). Stonmach anal yses (ARTHUR 1976) suggest that the snmall eyes
[imt their ability to hunt during dusk and dawn. The |arvae of
this group grow nore slowy than fusiformlarvae (THEI LACKER and
DORSEY 1980) .

B) Tadpol e-1ike and fusiform | arvae

Tadpol e-li ke | arvae concentrate their body mass in a big head
whereas fusiform |arvae already have the typical shape of the
adults. Both have large eyes. Because of their small surface area
they consune little energy when swimmng slowy (WEBB and WEIHS
1986). On the other hand, the small surface area limts their
oxygen uptake, which in turn limts their growth (PAULY 1981);
they nust swmto inprove the efficiency of the respiratory
surface. Tadpole-like and fusiformlarvae feed in a manner
typical of many adult fishes (HUNTER 1981, page 41): "Upon
sighting a prey, the |arva advances towards the prey, stops,



draws back the tail, and holds it in a slightly recurved high
anplitude position. The rest of the body is straight; feeding is
acconpl i shed by opening the mouth and driving the tail
posteriorly." These | arvae possess a good manouvering capability
and will attack the sane prey several tines (BLAXTER and STAI NES
1971).They are well prepared to successfully exploit short-tine
aggregations of prey (HOUDE and SCHEKTER 1978) or attack |arge
prey organisns (ARTHUR 1976). Fish larvae, including their own
species, are part of the normal diet (GRAVE 1981; HUNTER and
KIMBRELL 1979; LAURENCE et al. 1981; Lipskavya 1982; NELLEN 1986;
Q ESTAD 1985). Their large eyes should be advantageous for
hunting and escaping during dusk and dawn. Altogether, tadpole-
like and fusiform larvae seemto represent a nore nodern type of
fish larva.

4.3 Two strategies for survival

The two groups seem to represent two different strategies for
survival: Goup A accepts the disadvantages of slow growh for
t he advantage of feeding on abundant small prey items. Mortality
caused by predation should be reduced by their ability for burst
swwmmng as well as by their extrene length and depth,
respectively, which makes them appear bigger than corresponds to
their volunme. Their energy-saving swnmng style should enable
them better to survive periods of starvation.

The strategy of group B) is described by HUNTER (1981) as "l arge
prey - fast growth". These |arvae represent fast-grow ng
predators. They invest energy to speed through the phase of high
vulnerability. |f, however, appropriate prey itens are scarce,
this strategy fails, and because of their high energy consunption
they could soon reach the "point of no return".

4.4 (Concl usi ons

The ideas presented here are based on analysis of a limted
nunber of species, and on limted know edge on behaviour of fish
| arvae. There m ght well be nore categories of fish larvae, for
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exanpl e, elongated |arvae such as Glyptocephalus cynoglossus Of
for box-like |arvae such as Zeus faber. There mght also well be
differences between eel-like larvae and deep + conpressed |arvae
that preclude their pooling into one group. The ideas presented
in this paper therefore remain hypothetical, pending

verification.
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