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ABSTRACT 

Minimizing the impact of fishing is an explicit goal in international agreements as well as in regional 

directives and national laws. To assist in practical implementation, three simple rules for fisheries 

management are proposed in this study: 1) Take less than nature by ensuring that mortality caused by 

fishing is less than the natural rate of mortality; 2) Maintain population sizes above half of natural 

abundance, at levels where populations are still likely to be able to fulfill their ecosystem functions as 

prey or predator; and 3) Let fish grow and reproduce, by adjusting the size at first capture such that the 

mean length in the catch equals the length where the biomass of an unexploited cohort would be 

maximum (Lopt). For rule 3), the basic equations describing growth in age-structured populations are 

reexamined and a new optimum length for first capture (Lc_opt) is established. For a given rate of fishing 

mortality, Lc_opt keeps catch and profit near their theoretical optima while maintaining large population 

sizes. Application of the three rules would not only minimize the impact of fishing on commercial 

species, it may also achieve several goals of ecosystem-based fisheries management, such as rebuilding 

the biomass of prey and predator species in the system, and reducing collateral impact of fishing, 

because with more fish in the water, shorter duration of gear deployment is needed for a given catch. 

The study also addresses typical criticisms of these common sense rules for fisheries management.  
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Introduction 

A reduction of the impact of fishing on ecosystems is called for in international forums such as the 

Rio+20 summit of June 2012 (UN 2012), meetings on responsible fishing at the international level (FAO 

2012), and in regional directives and laws such as the European Marine Strategy Framework Directive 

(MSFD 2008) and the recently reformed Common Fisheries Policy of Europe (CFP 2013). For example, in 

addition to the legal requirement of rebuilding stocks above the level that can produce the maximum 

sustainable yield, the CFP demands in Article 2.3 that “…negative impacts of fishing activities on the 

marine ecosystem are minimized…” and the MSFD requires in commercially exploited stocks a “[..] 

population age and size distribution that is indicative of a healthy stock”. Here it is proposed that three 

simple management rules can help in meeting these requirements.  

Rule 1: Take less than nature 

The first rule states that humans should not take more than nature, i.e., human-induced mortality shall 

not exceed the instantaneous rate of natural mortality (M), so that total mortality in exploited 

populations is not higher than twice the rate that populations have evolved to withstand. M has long 

been used in fisheries science as a proxy for the upper limit of the instantaneous rate of sustainable 

fishing mortality FMSY (Gulland 1971; Shepherd 1981; Beddington and Cooke 1983; Clark et al. 1985; 

Beverton 1990; Patterson 1992; Thompson 1993; Walters and Martell 2002, 2004; MacCall 2009; Pikitch 

et al. 2012). For example, the U.S. National Oceanographic and Atmospheric Agency uses M as proxy for 

FMSY in assessments of data limited stocks (NOAA 2013). Here it is argued that in order to minimize 

impact of fishing on the age and size distribution in a population, fishing mortality (F) may not exceed 

the average M of adults in any size or age class. A meta-analysis of 245 fish species worldwide suggested 

that FMSY = 0.87·M was a reasonable target for teleosts and FMSY = 0.41·M for chondrichtyans (Zhou et al. 

2012). To avoid the widespread collapse of shoaling pelagic species (Essington et al. 2015) such as 

herring, sprat or anchovies, F must be smaller than 2/3 of M (Patterson 1992). A large study of 

population dynamics of forage fish concluded that “to ensure a high probability (75-95%) that forage 

fishing will not place dependent predators (fish, birds, marine mammals) at jeopardy of extinction”, F 

should not exceed 0.5·FMSY or 0.5·M (Pikitch et al. 2014). An examination of stock assessment failures 

(Walters and Martell 2002) concluded that “…any assessment that results in F >> 0.5·M must be very 

carefully justified…”. Setting F to about half of M also takes care of the large uncertainties associated 

with the estimation of these parameters (Punt 2006; MacCall 2009; Punt et al. 2014 ), because the 

precautionary principle, which is a key ingredient of basically all legal systems, demands that in the face 
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of uncertainty, policymakers should implement policies that reduce the probability of harm to the 

resource (FEU 2009). These considerations make it clear that F = M is the upper, to-be-avoided limit of 

sustainable fishing mortality and that F ≈ 0.5·M may be a precautionary target.  

Rule 2: Maintain populations above half of natural abundance 

The second rule states that fishing should not reduce populations below half of their natural unexploited 

abundance. Production models such as those of Fox (1970) or Schaefer (1954) show that maximum 

sustainable yields can be obtained at stock sizes between 37% and 50% of unexploited biomass (B0), 

respectively. Beverton and Holt (1957) yield-per-recruit models demonstrate that, for a given fishing 

mortality, higher catch and biomass can be obtained by increasing the length at first capture.  A study of 

seabird populations (Cury et al. 2011) showed that about 1/3 B0 of forage fish is needed to prevent the 

collapse of dependent seabirds. These models and empirical data suggest that populations may be 

unable to fulfill their respective roles as prey and predator if fishing reduces them below half of their 

natural abundance. Therefore, in accordance with the more conservative (Cadima 2003) Schaefer model 

and keeping in mind the insights from yield-per-recruit analysis, ½ B0 is proposed as a lower limit 

reference point for stock size.     

Rule 3: Let fish grow and reproduce 

The third rule states that individuals of exploited populations should be allowed to reproduce and 

realize their growth potential before being caught. Fish grow throughout their lives, and it is long known 

“that it would pay to give the fish a chance to grow” before being caught (Graham 1935), i.e., that larger 

catches can be obtained with the same effort if the onset of fishing is postponed to older ages and 

greater sizes (Beverton and Holt 1957; Garcia and Demetropoulos 1986; Vasilakopoulos et al. 2015). In 

fact, catches and profits near the theoretical maximum can be obtained together with a strongly 

reduced impact of fishing on biomass and age structure if the allowed catch is taken around an optimum 

size of individuals (around 2/3 of maximum length, L∞) where cohort biomass is a maximum (Froese et 

al. 2008).    

Arguably, the body length Lopt where the biomass of a cohort and its fecundity are maximum (see 

discussion of M/K ratio below), is the most important point in the life of adult fish. Semelparous fish 

such as lampreys, eels or salmon maximize the output of their single reproductive event at Lopt (Roff 

1984). Iteroparous species maximize their life-time fecundity, if they mature such that their multiple 

spawning events cluster around Lopt (Froese and Pauly 2013). For a given allowed catch, starting fishing 
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at Lopt leads to greater stock sizes and greater profits, albeit with a slightly increased cost of fishing 

(Froese et al. 2008, 2015b). Instead, gear selectivity can be regulated such that Lopt is not the smallest 

but the average length in the catch, thus avoiding an unusually large size at first capture (Cardinale and 

Hjelm 2012) which may be difficult to enforce. For strongly size-selective gears such as gill nets or traps, 

this can be done by adjusting selectivity such that the peak of the selection curve occurs at Lopt. For gears 

that retain fish beyond a certain size, such as trawls and seines, a new optimum length at first capture 

Lc_opt is presented, i.e., a target length for the start of fishing which results in yields and catch per unit 

effort that are practically identical with the maximum that can be achieved with a certain fishing 

mortality. At the same time, starting fishing at Lc_opt maintains large stock sizes and leads to a mean 

length of Lopt in the catch and in the exploited part of the population. 

The purpose of this study is to present support for the three rules from analytical yield-per-recruit and 

economic modeling perspectives and to contrast them with current fisheries management, using North 

Sea cod (Gadidae, Gadus morhua) as an example (ICES 2015).  

Material and Methods 

The equations and assumptions underlying the results and conclusions of this study are presented in 

Appendix 1. Some of these equations have been published in heterogeneous documents and are poorly 

known. Here, all the equations are presented in a unique and homogeneous framework. A completely 

new equation to determine the optimal length at first capture Lc_opt, is also presented. Starting fishing at 

this length results in a mean length of Lopt for the catch and the exploited part of the population.    

𝐿𝐿𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐿𝐿∞
2+3 𝐹𝐹/𝑀𝑀

(1+𝐹𝐹/𝑀𝑀)(3+𝑀𝑀/𝐾𝐾)
         (1) 

where L∞ and K are parameters of the von Bertalanffy growth equation, and other variables are as 

defined in the text above.  

Some of the equations in Appendix 1 are very long and prone to typing errors. The spreadsheets behind 

Figures 1-5 (YpR_generic_5.xlsx, YpR_cod_3.xlsx) are therefore provided as online material for download 

from http://oceanrep.geomar.de/30244/. 

 

Based on the equations in Appendix 1, and building on the evolutionary M/K ratio of 1.5, generic yield- 

and biomass-per-recruit curves could be calculated and were used to explore the performance of the 
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proposed three simple rules for fisheries management. Sensitivity analyses were performed for other 

values of the M/K ratio. Performance of the simple rules was also tested with a conventional age-

structured dynamic pool model (Clark 1991), including a realistic range of Beverton and Holt (Beverton 

and Holt 1957) spawner-recruitment curves (Myers et al. 1999; Rose et al. 2001) and a wide range of 

life-history parameters. The corresponding results and graphs are part of the online material and can be 

generated with the R-script Age-structured-simulation_2.R. Data for North Sea cod were obtained from 

stock assessment documents (ICES 2015). 

Results 

Importance of length at first capture  

For every fishing mortality there is a corresponding length at first capture Lc_max that will maximize yield 

typically within a few years in stocks with medium resilience (Beverton and Holt 1957, 1966) (Fig. 1).  

 

Figure 1. Relative length at first capture (Lc / L∞) as a function of fishing mortality F relative to natural mortality M. The 
dashed curve (Lc_max) results in the maximum yield-per-recruit and the solid curve (Lc_opt) results in a mean length of Lopt in 
the catch. Using North Sea cod as an example, Lm indicates the length where 90% of the individuals reach maturity, Ll 
indicates the minimum legal landing size, and F2014 marks the actual fishing mortality in 2014.  [see YpR_generic_5.xlsx in 
online material] 

Similarly, there is a slightly larger length Lc_opt resulting in a mean length of Lopt in the catch (see 

Equations A7, A12 and A13 in Appendix 1). In the area of sustainable fishing mortalities from 0.5·M to 

M, Lc_opt exceeds Lc_max by 8 – 19%, respectively, with the difference decreasing as F increases. At the 
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maximum fishing pressure F=M allowed under rule 1, the value of the length at first capture Lc_opt 

suggested by rule 3 is equal to 56% of L∞. For the proposed target of F = 0.5 M, the corresponding Lc_opt is 

52% of L∞. Note that Lc_opt remains well above the length where, for example, 90% of North Sea cod 

reach maturity (Fig. 1). The minimum legal landing size for North Sea cod of 35 cm would maximize yield 

only for a very low fishing mortality of F = 0.1·M. Instead, the actual fishing mortality of cod in 2014 was 

1.9·M. The Lc_opt for a fishing mortality of 1.9 M is 76 cm, while it would be 72 cm for F = M and 67 cm for 

F = 0.5 M.          

 

Yield-per-recruit analysis  

To facilitate comparison between stocks, yield is expressed relative to the theoretical maximum yield 

(Holt 1958) that would result from fishing with infinite effort and capturing all fish at the length Lopt 

where cohort biomass is at its maximum (Fig. 2a). Fishing starting at Lc_max or Lc_opt results in practically 

the same maximum yield for a given F. The respective yield curves approach the theoretical maximum 

yield asymptotically with increasing F, thus illustrating the historical difficulty of deriving guidance on 

maximum sustainable fishing from yield-per-recruit analyses. Only if the length at first capture is 

suboptimal, as in the curve for North Sea cod or in the curve without size limits (Fig. 2a), the yield-per-

recruit as a function of F shows a humped curve — and thus an indication of Fmax at the peak.  
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a 

 

b 

 

Figure 2. a) Yield-per-recruit relative to the theoretical maximum yield and b) Biomass-per-recruit relative to 
unexploited biomass, as a function of the F/M ratio, for different lengths at first capture. Lc_opt (solid curve) 
indicates the length that results in Lopt as mean length in the catch and Lc_max (short dashed curve) indicates the 
length that results in maximum yield for a given F/M ratio. F0.1 marks a widely used precautionary level of fishing 
mortality. The long-dashed curve is an example of yield or biomass-per-recruit for North Sea cod, caught from the 
legal minimum landing size Ll = 35 cm onward with a fishing mortality of nearly 2 M in 2014. The lowest yields and 
biomass are obtained by fishing without lower size limits, as indicated by the dot-dashed line, which assumes an 
onset of fishing at 5% of asymptotic length. The curves for cod and the no-size-limit scenario are dotted and 
marked with question marks once biomass falls below 20% of unexploited biomass B0 level, where recruitment 
may be impaired and absolute biomass and yield may be much reduced.  [YpR_generic_5.xlsx] 

 

To deal with this lack of guidance, arbitrary precautionary levels for F have been introduced, such as F0.1 

(Gulland and Boerema 1973), which has been used widely in fisheries management, and which marks 
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the fishing mortality where the slope of the yield-per-recruit curve is 1/10th of its value at the origin 

(Pauly 1984; Cadima 2003). As Shepherd and Pope (2002, p. 175) have put it, F0.1 is a “common sense 

rule for determining when future increases in F lead to little extra yield”. F0.1 falls below the level where 

F equals M and results in an equilibrium stock size of nearly half of unexploited biomass (Fig. 2b); in 

other words, F0.1 is a high but still precautionary management target if combined with the appropriate 

length at first capture (Lc_opt for F = F0.1 is 55% of L∞, leading to a catch of 80% of the theoretical 

maximum).  A less arbitrary upper limit reference point suggested by the simple rules is F = M, which, if 

combined with Lc_opt = 56% of L∞, leads to a catch of 81% of the theoretical maximum. Note that the 

target of F = 0.5 M does not reduce this catch by half, but rather gives 77% of the yield at F = M, i.e., a 

decrease in effort (and associated cost) of 50% results in a decrease in catch (and income) of only 23%.   

 

The 2014 exploitation pattern of North Sea cod with F = 1.9 M and Lc = 35 cm is suboptimal and leads to 

poor yield-per-recruit. Having no size limits on fishing leads to the lowest yield-per-recruit of all 

scenarios (Fig. 2a). Note that for the cod and the “no size limit” scenarios, yields at F values associated 

with low biomass may be much lower than suggested by the yield-per-recruit curves (thin dotted curve 

extensions in Fig. 2a), because above F = M, biomass-per-recruit is strongly reduced (B <= 0.2 B0, Fig. 2b), 

suggesting increased probability of impaired recruitment.    

Biomass-per-recruit analysis 

To evaluate the impact of fishing, biomass is shown relative to unexploited biomass, with B = 0.5·B0 

indicating the lower limit of acceptable stock sizes (Rule 2) and F = M indicating the upper limit of fishing 

mortality (Rule 1) (Fig. 2b). Within these limits, the best compromise between high yield, high biomass, 

and a low cost of fishing is found at fishing starting at Lc_opt (bold line indicated in Fig. 2b). Note that this 

fishing strategy results in B = 0.5·B0 when F = 0.86·M. Thus, a fishing pressure equal to 86% of the rate of 

natural mortality marks the highest theoretical fishing pressure that still fulfills all three proposed rules. 

Using again the example of the North Sea cod with fishing starting at Ll = 35 cm, the actual fishing 

mortality 1.9·M of 2014 would keep the stock below 13% of unexploited biomass-per-recruit, i.e., 

outside of safe biological limits. Instead, reducing F to half of M and starting fishing at Lc_opt would result 

in about 60% of the unexploited biomass, with higher yields and substantially lower cost of fishing (Fig. 

2).  
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Having no size limits results in the lowest possible biomass-per-recruit for any fishing pressure. When 

fishing mortality equals the natural mortality of adults, the resulting biomass-per-recruit is less than 18% 

of the unexploited biomass, i.e., within the range where successful production of offspring may be 

compromised (Beddington and Cooke 1983) and thus outside of safe biological limits (Common Fisheries 

Policy 2013; Froese et al. 2014).  

 

Discussion 

In discussing the implications of the three proposed rules for fisheries management, typical criticisms of 

the models and assumptions used in support of the three rules are addressed first. Then the biological 

and economic implications of the rules and their potential contribution to ecosystem-based fisheries 

management are discussed. Then recent calls for fishing all species at all sizes are refuted, caveats 

associated with the three rules are acknowledged, and conclusions summarize the findings.  

Criticism of single species models is overstated 

The call for ecosystem-based fisheries management has led to criticism of single species models as used 

in this study, which are said to ignore species interactions and trophic relationships (e.g. ICES 2013a). 

Such criticism may be overstated. Typical single species stock assessment models such as presented in 

this paper contain three parameters that link the stock in question with its prey and predators and its 

environment: the first parameter is the rate of natural mortality M, which is the sum of mortality rates 

caused by predation, disease, environmental harshness and hazards, competition, and old age. While 

each of these causes of mortality may fluctuate strongly between years and size classes, the overall sum 

appears to be reasonably stable during the average duration of the adult phase (Kenchington 2014) and 

thus is a reasonable representation of the fraction of observed total mortality that has natural causes. 

The second parameter is K, which determines how fast maximum body size is approached, and hence 

quantifies somatic growth, as influenced by the availability of food, the energy spent on hunting and 

grazing, the inter- and intraspecific competition for food resources, the impact of environmental 

temperature and oxygen on assimilation of food (Pauly 2010), and the composition of individual genetic 

growth potentials present in the population in a certain year. Again, while all these impacts on somatic 

growth will vary between years and cohorts, using an average K estimated across cohorts in recent years 

provides a reasonable representation of the range of ecological and environmental impacts on the 

stock. The third parameter is the number of recruits R that join the exploited part of the population. This 
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number is influenced by the number and fecundity of their parents, by environmental conditions 

(temperature, oxygen, salinity, currents and wind stress) during the early development stages, and by 

the abundance and small-scale co-occurrence of predators and suitable prey. Unless there are strong 

changes in the overall ecosystem, M and K can be expected to be reasonably stable over the average 

adult life time. In contrast, R may fluctuate strongly due to short-term environmental conditions, or 

exhibit marked trends, such as the long term decrease recently shown for many European stocks in 

relation to overfishing and global change (Gascuel et al. 2014). Thus, because R is difficult to predict, the 

pertinent equations in this study are expressed on a per-recruit basis (Beverton and Holt 1957).  

In summary, the criticism that single species models do not take into account species interactions and 

environmental variability is overstated because assessments are done on real-world stocks interacting 

with other species through growth and natural mortality and responding to environmental variability 

with highly variable recruitment.  

 

Influence of stock-recruitment models on fisheries reference points 

Yield-per-recruit analysis as applied in this study has been criticized for not taking into account the 

relationship between number of recruits and the corresponding spawning stock size (Sparre and 

Venema 1998), i.e., the claim is that curves for yield and biomass would look different if stock-

recruitment (S-R) relationships had been considered. Widely-used S-R models are those of Beverton and 

Holt (Beverton and Holt 1957) and Ricker (Ricker 1975). More parsimonious S-R models are simple 

hockey-stick functions which assume log-normal fluctuations around a constant recruit-per-spawner 

ratio at low population sizes and around constant mean recruitment at large population sizes (Clark et 

al. 1985; Barrowman and Myers 2000). A decline in recruitment is typically assumed at stock sizes below 

20% of unexploited biomass B0 (Beddington and Cooke 1983; Myers et al. 1994; Gabriel and Mace 

1999). However, starting fishing at Lc_opt does not reduce equilibrium biomass below 1/3 of B0, even if F 

is very high (Fig. 2b). Thus, the decline in recruitment at low biomass does not affect the predicted yield 

and biomass curves associated with the three rules. Similarly, with hockey-stick recruitment, no change 

to the predictions from yield and biomass-per-recruit is expected for high biomass (ICES 2013b).  

For good measure, the predictions of the yield-per-recruit analyses as used in this study were compared 

with those from a conventional age-structured dynamic pool model (Clark 1991), including a realistic 

range of Beverton and Holt (Beverton and Holt 1957) spawner-recruitment curves (Myers et al. 1999; 
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Rose et al. 2001) and a wide range of life-history parameters. Starting fishing at Lc_opt with F = 0.5 M 

consistently produced equilibrium spawning biomass levels of 40% to 60% of pristine spawning biomass 

with equilibrium yields typically ranging from 75% to 80% of the theoretical maximum yield. These 

results lead to the same conclusions as the yield-per-recruit results shown in Fig. 2 and are therefore not 

presented in detail. They can be reproduced with an R script that is part of the online material.  

In summary, the conclusions presented in this study with respect to fishing at F < M and starting fishing 

at Lc_opt do not change if realistic assumptions about stock-recruitment relationships are included in the 

models. 

 

The evolutionary M/K ratio 1.5 

Using the M/K ratio instead of the individual parameters M and K is advantageous because the ratio is 

known to vary less than the parameters themselves (Beverton and Holt 1959), and the ratio can be 

approximated from life history theory (Jensen 1996; Hordyk et al. 2015; Prince et al. 2015). The curves 

shown in this study refer to populations with an M/K ratio of 1.5, where the peak in cohort biomass 

coincides with maximum growth in body weight. With other M/K ratios the shape of e.g. the yield curve 

would change slightly (Fig. 3). Typical M/K ratios for species with indeterminate growth fall between 1.0 

and 2.0 (Beverton and Holt 1959) with extreme values around 0.5 and 3.0, and with 1.5 representing a 

median of observed values (Prince et al., 2015). But why do M/K ratios cluster around the 1.5 ratio? This 

question can be answered by exploring the relation between peak cohort biomass and cohort age at 

that peak. Because fecundity is proportional to body weight in most fish (Gunderson 1997) and because 

most fish mature at or before the peak in cohort biomass (Froese and Pauly 2013), the height of this 

peak can be understood as a proxy for the life-time reproductive output (LRO), and the corresponding 

age can be understood as a proxy for generation time, which itself is an inverse proxy for rmax, the 

intrinsic rate of population increase (Charnov 1993; Roff 2002). If the M/K ratio is smaller than 1.5, then 

mortality is low relative to growth and the peak in cohort biomass occurs at a later age and increases in 

height, thus increasing fitness as measured by LRO. However, since the peak in biomass and 

reproductive output appears at a later age, generation time increases, thus reducing rmax, the other 

measure of fitness (Charnov 1993; Roff 2002). In the opposite way, if the M/K ratio is larger than 1.5, 

then mortality is high relative to growth and the peak in cohort biomass occurs at an earlier age with 

decreased height, thus increasing fitness as measured by rmax but decreasing fitness as measured by 

LRO. In other words, there is a trade-off between amount and timing of reproductive output, with no 
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obvious optimum, and other life history traits are needed to determine the best combination of LRO and 

rmax.  

 

Figure 3. Relative yield if fishing starts at Lc opt, for different M/K ratios, where 1.0 and 2.0 represent the typical range and 0.5 
and 3.0 represent extreme bounds of observed ratios. M/K=1.5 is proposed as an evolutionary ratio, providing a fitness 
advantage because the peak in gamete production coincides with the peak in the production of new tissue. 
[YpR_generic_5.xlsx] 

One such trait is the net production of body mass dW/dt, which reaches a peak at about 30% of 

maximum body weight. It can be demonstrated that the peak in cohort biomass coincides with this body 

weight if the ratio M/K is equal to 1.5 (Jensen 1996, Jennings et al. 2007). In that case, net tissue 

production of parents would be maximum at the time when most of their gametes are produced and a 

given reproductive output would take the least fraction of net tissue production. Thus, from an 

evolutionary perspective, maximum growth performance including the production of gonad tissue is 

combined with the peak in expected offspring production if M/K = 1.5 (Froese and Pauly 2013). This 

provides a fitness advantage because with this ratio, natural selection has “economize[d …] the 

organization” of reproduction (Darwin 1859). In conclusion, Figs. 1-3 can be seen as representing key 

population traits under an evolutionary optimized scenario with respect to growth performance and 

production of offspring.  

With M/K = 1.5, the equation for Lopt simplifies to Lopt/Linf = 2/3 and the equation for the age at the peak 

in biomass simplifies to topt·M = 1.65. These three numbers are known as “Beverton and Holt life history 

invariants” (Jensen 1996, Prince et al. 2015) and were derived from optimization of age at first maturity 

(Roff 1984) with the assumption that all species mature around Lopt/Linf = 2/3, which is clearly not the 
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case (Froese and Pauly 2013). As argued above, it suffices to assume that fecundity is proportional to 

body weight (Gunderson 1997) and that individuals are reproductively active at the peak of cohort 

biomass (Froese and Pauly 2013), which then becomes the peak of cohort fecundity and the peak of 

offspring production. A fitness advantage is then derived from the fact that with M/K = 1.5, the peak in 

cohort reproduction coincides with the average peak in somatic growth rate of cohort members, 

meaning that at the time when most offspring are produced, their parents are capable of producing the 

highest amount of extra tissue per unit time.  

In summary, it can be argued that the M/K ratio, which is a key component of the equations used in this 

study, provides an evolutionary advantageous alignment of fecundity with somatic growth at a value of 

1.5.  

 

Minimizing the impact of fishing 

Minimizing the impact of fishing on a population means that close-to-natural numbers of individuals 

should participate in important life history events. One such event is maturation, and the rules proposed 

here would ensure that in species with multiple spawning events, the number of individuals reaching 

maturation is not reduced by fishing. A second such event is reaching the size and age where the 

somatic growth rate is maximum and where a fitness advantage is gained if the peak of expected 

offspring production happens at this stage. The rules proposed here ensure that the individuals in the 

exploited part of the population reach that age and size on average. But there are two other important 

population traits that have not yet been used in fisheries management. The first is the average duration 

of the reproductive phase. If total mortality Z = M+F is reasonably constant after the age where fish 

reach maturity, then the average duration of the reproductive phase is simply the inverse of Z (Charnov 

1993). Thus, in the example for North Sea cod with M = 0.21, the average duration of the reproductive 

phase without fishing is 4.8 years. Fishing throughout the reproductive phase with the actual fishing 

mortality of 2014 of F = 0.39 results in 1/Z = 1.7 years or 35% of the natural duration. In contrast, 

starting fishing at Lc_opt with F = 0.5·M, results in a mean total mortality rate Zmean = 0.3 and an average 

duration of the reproductive phase of 3.3 years or 69% of the natural duration, a substantial reduction 

of the impact of fishing.  

The second population trait that has not been used in fisheries management is the mean body weight of 

spawners, which is related to mean fecundity by the gonado-somatic index (Gunderson 1997). In the 
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example for North Sea cod, predicted mean body weight of spawners in the unexploited stock is about 

8.0 kg (see Equation A23 in Appendix 1). For the exploitation scenario of 2014, predicted mean body 

weight of spawners is 4.4 kg or 55% of the natural weight and fecundity. In contrast, starting fishing at 

Lc_opt with F = 0.5 M results in a predicted mean body weight of spawners of 6.5 kg or 81% of the natural 

weight and fecundity, again a substantial reduction of the impact of fishing (see Equation A22 in 

Appendix 1).  

In summary, the proposed three rules would reduce the impact of fishing by ensuring that all fish reach 

maturation, that the age of maximum growth rate and natural generation time is reached on average in 

the exploited part of the population, that mean duration of the reproductive phase is not less than 69% 

of the natural duration, and that mean body weight and fecundity of spawners are not less than 81% of 

the unexploited levels.  

 

Economic considerations 

The main economic driver of commercial fishing is profitability, which is determined by the discounted 

value of the difference between the market value of the catch and the cost of fishing (Clark 1990; 

Sumaila et al. 2012). It is customary in the fisheries economics literature to assume that the variable cost 

of fishing increases about linearly with fishing effort (Clark 1990), which is itself proportional to fishing 

mortality F (Beverton and Holt 1966). A break-even point, known as the open access or bionomic 

equilibrium (Clark and Munro 1975), is reached when the value of the catch equals the cost of fishing. 

Here, four scenarios are explored, where the break-even points are reached at relative fishing 

mortalities from F/M = 1 to F/M = 4 (Fig. 4). For fishing with F = M and Lc = Lc_opt, these cost scenarios 

correspond to profit margins of 0%, 44%, 60% and 70%, respectively. The average profit margin of the 

European fleet in 2012 was 6.6% (STECF 2014) with an average fishing mortality of about F/M = 1.75, 

which would give a break-even point (i.e., no profit) near F/M = 2, i.e., close to the second scenario. 

Scenario 1 with break-even at F/M = 1 would represent a fishery with either low value of the catch, such 

as in mixed demersal fisheries for fish meal, or high cost of fishing, such as in deep-sea trawl fisheries, or 

both. Scenarios 3 and 4 would represent highly profitable fisheries on high-value fish at relatively low 

cost, such as in some tuna fisheries.  
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Figure 4. Relative yield and value as a function of fishing pressure F/M with fishing starting at Lc_opt. Illustrated are four 
different scenarios for the cost of fishing (dashed lines). The scenarios are differentiated by break-even points at F/M = 1 to 
F/M = 4, where the cost of fishing equals the value of the catch. The vertical dotted lines indicate the maximum profit that 
can be obtained under a given cost scenario. Note that in all cost scenarios, maximum economic yield is obtained at fishing 
mortality rates below the natural mortality rate. The dot-dashed curve indicates fishing without size limits, leading to much 
reduced or negative profit margins [YpR_generic_5.xlsx]. 

Notably, with fishing starting at Lc_opt, maximum profits are obtained in all scenarios at fishing mortalities 

below natural mortality. In contrast, fishing at F = M without size limits results in large losses for 

scenario 1, zero profit for scenario 2, and much reduced profits for scenarios 3 and 4.   

These simple economic considerations are consistent with a proxy for the biomass that can produce the 

maximum economic yield Bmey = 1.2·Bmsy used in Australian fisheries management (Punt et al. 2013). 

Studies across different Australian stocks have shown that a biomass that is about 20% higher than the 

one that can produce the maximum sustainable yield maximizes economic returns. Similarly, simulation 

testing of proxies for Bmey suggests that depletion levels in the range 0.5 – 0.7 B0 typically maximize 

profit (Punt et al. 2013). The rules presented in this study ensure that biomass of exploited populations 

remain within that range.    

Note that yield is the product of fishing mortality and annual exploitable biomass. To obtain the 

maximum yield for a given F, length at first capture can be increased to allow for a longer unexploited 

growth phase, until exploitable biomass and therefore catch-per-unit-effort (CPUE) reach a maximum. 

Consequently, if exploitable biomass or CPUE were plotted as a function of F, the CPUE curves for Lc_max 

and Lc_opt would overlap similar to the yield curves shown in Fig. 2. In other words, the gain in cohort 

biomass when fishing starts at a slightly larger size than needed to maximize yield is not countered by a 
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notable reduction in catch or increase in cost of fishing: these economic indicators both remain near 

their theoretical optimum for a given F. This surprising result stems from the fact that the yield isopleths 

in a yield-per-recruit diagram, at their intersection with Lc_max (see B' curve in Fig. 17.14 of Beverton and 

Holt 1957, p. 318), run nearly parallel to the length-at-first-capture axis, and therefore a modest 

increase in Lc from Lc_max to Lc_opt  (Fig. 1) results in about the same exploitable biomass, CPUE and yield, 

but in a larger total biomass (Fig. 2).         

In conclusion, if fishing starts at Lc_opt and if realistic costs of fishing are assumed, profits are maximized 

at fishing mortality rates below natural mortality, with corresponding stock sizes above half of 

unexploited stock size.  

 

Towards ecosystem-based fisheries management  

One of the goals of ecosystem-based fisheries management is to minimize the impact of fishing on size 

and age structure of exploited populations (MSFD 2008). Life history data for North Sea cod were used 

to explore the impacts of different fishing regimes on cohort biomass (Fig. 5a). Under an Lc_opt fishing 

scenario with F = M, biomass is still unexploited at the length of maturity and reasonably high at Lopt 

(62% of unexploited biomass). In comparison, fishing North Sea cod with F = M starting at the current 

legal length of Ll = 35 cm results in reduced biomass at maturity and a biomass of only 30% of 

unexploited biomass at Lopt. Fishing without size limits reduces biomass even further, especially if higher 

M and therefore also higher F values are applied to pre-recruits, as advocated in some recent 

publications (Garcia et al. 2012; Law et al. 2015; but see critique in Froese et al. 2015a), and as indicated 

in the “no size limit” curve in Fig. 5a. With regard to size structure of the population (Fig. 5b), the 

number of surviving individuals declines about linearly with length in the absence of fishing. Starting 

fishing at Lc_opt allows all fish to reproduce before capture, allows about two third of the fish to reach full 

growth potential (at Lopt), and has an overall much reduced impact on size structure compared to 

starting fishing at legal length or without size limits.  
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a 

 

b 

 

Figure 5.  (a) Cohort biomass relative to maximum and (b) fraction of surviving recruits over body length, based on 
life history data for North Sea cod with recruitment at about 30 cm and mean natural mortality of 0.21. Included are 
indications of the length Lm where individuals reach maturity and the length Lopt where cohort biomass reaches a 
maximum. The bold curve indicates no fishing. The three other curves indicate fishing with F=M, but with fishing 
starting at different lengths. The solid curve results if fishing starts at Lc_opt = 72 cm, resulting in a mean length in the 
catch equal to Lopt and also in the highest catch (see Fig. 2). The long-dashed curve indicates biomass when fishing 
starts at the legal minimum landing length of 35 cm. The dash-dot curve indicates fishing of the smallest possible 
size, here assumed at 6 cm, with natural and fishing mortality of pre-recruits at twice the adult level. 
[YpR_cod_3.xlsx] 
 
 

Note that while we have used cod as a convenient example of a highly commercial species, the same 

principles apply to other fish and to invertebrates. Application of the three rules to all exploited species 

may achieve several goals of ecosystem-based fisheries management (Pikitch et al. 2004), such as 
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rebuilding the biomass of prey and predator species in the ecosystem and reducing collateral impacts of 

fishing, such as bycatch and habitat disturbance, because with larger stock sizes and higher catch per 

unit effort, less duration of gear deployment is needed for a given catch and more selective gears such 

as traps can replace unselective gears such as trawls. For example, medieval fishers have caught North 

Sea cod mostly at sizes between 80 and 120 cm, i.e., roughly Lc_opt to Lopt for a fish that could get to 180 

cm in length. The fishing mortality at the time was probably well below natural mortality. This historical 

application of the three rules resulted in a fishery that was sustained over hundreds of years, without a 

noticeable decline in mean length (Barret et al. 1999; Harland and Parks, 2008), suggesting a sustainable 

fishery with catches probably above current catches.  More generally, ecosystem modeling shows that 

keeping exploited stocks above half of their unexploited level with exploitation rates of about half of the 

maximum sustainable level strongly reduces the impact on other ecosystem components while still 

achieving high catches (Smith et al. 2011; Eddy et al. 2015). 

  

In summary, while the three rules do not deal with all aspects of ecosystem-based fisheries 

management, such as discards, destructive gears, mixed fisheries, community structure, habitat 

restoration, system-optimization or protection of threatened species, they go a long way in restoring 

ecosystem biomass and reducing human impact while maintaining highly profitable fisheries. 

 

Refuting calls for unselective fishing 

The proposed simple rules for fisheries management are in stark contrast to recent calls for unselective 

fishing or “balanced harvesting” (Garcia et al. 2012; Kolding and Van Zwieten 2014; Law et al. 2015). The 

concept suggests fishing of all species and of all size classes above larvae at their respective productivity 

levels. Such fishing without size limits is predicted to increase catches and reduce ecosystem impacts. 

However, fishing indiscriminately all species from worms to whales and from kelp to corals runs counter 

to global efforts and laws aiming at protection of threatened species and vulnerable ecosystems and 

avoidance of the capture of unwanted species (UN 1992; Marine Strategy Framework Directive 2008; 

Common Fisheries Policy 2013). More importantly, the proposed indiscriminate fishing of all size classes 

ignores the fact that members of a small size class consist of small species as well as of the young of all 

larger species (Froese et al. 2015a). As a result, “balanced harvesting” would catch most fish well before 

they had a chance to grow and reproduce, at fishing intensities equal to the productivity level of the 
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small size classes, i.e., well above adult mortality levels. The benefits of letting fish grow before they are 

caught have been demonstrated in countless studies (Beverton and Holt 1957; Garcia and 

Demetropoulos 1986; Froese 2004; Froese et al. 2008; Chávez et al. 2013; Brunel and Piet 2013; 

Maravelias et al. 2014). As the equations and figures in this study clearly show, starting fishing of large 

species such as cod at their early life stages leads to severely reduced recruitment, biomass and size 

structure and may result in the extinction of slow growing species such as sharks.  

Caveats associated with the proposed rules 

This section lists some of the cases where the proposed rules have to be applied with caution or with 

additional considerations.  

For example, if there is strong sexual dimorphism in a species, such as in Greenland halibut 

(Pleuronectidae, Reinhardtius hippoglossoides), then the rules shall be applied to the larger or later 

maturing sex. The reasoning is that less fishing of the smaller sex may result in a distorted sex ratio, but 

applying the rules to the smaller sex would result in a distorted sex ratio as well as in overfishing of the 

larger sex. 

In semelparous species that die after spawning, such as salmon, squid or eels, postponing fishing until 

after maturity is of course not an option. But starting modest fishing shortly before the spawning event 

will still reduce impact on the stock while assuring high and profitable catches.  

In some species the gonado-somatic index is not more or less constant (Gunderson 1997) but increases 

with body weight. In such cases the peak in cohort fecundity would occur after the peak in cohort 

biomass and management might consider postponing even further the onset of fishing than suggested 

by Lc_opt.  

In species with alternating cycles of high and very low recruitment, such as Blue whiting (Gadidae, 

Micromesistius poutassou), the assumption of average recruitment at large biomass does not hold. 

However, the build-up of a large spawning stock biomass and the improved size and age structure 

resulting from the application of the three rules during periods of high recruitment will act as a buffer 

during periods of low recruitment and are likely to prevent the near-collapse scenarios visible under 

current management (Froese et al. 2010).    

Application of the three rules in practical management requires knowledge of the M/K ratio, the current 

F/M ratio, the current B/B0 ratio, and the current Lc/L∞ ratio. These ratios are typically known in fully 

assessed stocks or can be derived from the equations given in Appendix 1. Also, in the context of a 
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maximum sustainable yield framework, managers could decide to replace F/M with F/Fmsy (if Fmsy 

estimates are reasonably close to M) and B/(0.5·B0) with B/Bmsy. For application in data-limited stocks, 

equation 29 in Appendix 1 allows the estimation of the F/M ratio and equation 30 can be used to 

estimates the mean length in the catch that would be indicative of F=M. In extreme data-poor 

situations, enforcing a minimum length of half the maximum length and regulating fishing effort such 

that the mean length in the catch is about 2/3 of maximum length may go a long way towards a 

sustainable and profitable fishery.    

 

Conclusion 

Shifting from the current approach of maximum acceptable ecological impact to the principle of 

minimizing impact is a major conceptual change with substantial consequences for fisheries research 

and management (Gascuel et al. 2011). Our results show that reducing impact and increasing catches 

are not mutually exclusive goals if size at first capture is adjusted properly. The proposed rules would 

also achieve some of the goals of ecosystem-based fisheries management, such as rebuilding biomass of 

prey and predator species and reducing capture of unwanted or threatened species and of collateral 

damage to the ecosystem. We hope that the simple rules for fisheries management presented in this 

study will be accepted as a reminder of the basic concepts of fisheries science and will contribute to 

sustainable, high quality food supply from a healthy future ocean. 
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Appendix 1 

This Appendix presents the equations and assumptions behind the results, graphs and conclusion of this 

study. References cited in this Appendix can be found in the References section of this study. Spread-

sheet implementations of the equations can be found in the Online material of this study. 

 

Growth in body length follows the von Bertalanffy growth equation (von Bertalanffy 1938)  

𝐿𝐿𝑜𝑜 = 𝐿𝐿∞(1− 𝑒𝑒−𝐾𝐾(𝑜𝑜−𝑜𝑜0))         (A1) 

where Lt is the length at age t, L∞ is the asymptotic length, K is the rate by which L∞ is approached, and t0 

is the theoretical age at zero length. The age tL corresponding to a given length is obtained from 

𝑡𝑡𝐿𝐿 = 𝑡𝑡0 −  
ln�1− 𝐿𝐿𝑡𝑡

𝐿𝐿∞
�

𝐾𝐾
              (A2) 

Growth in weight also follows the von Bertalanffy growth equation 

𝑊𝑊𝑜𝑜 = 𝑊𝑊∞(1 − 𝑒𝑒−𝐾𝐾(𝑜𝑜−𝑜𝑜0))𝑏𝑏         (A3) 

where Wt is the body weight at age t, W∞ is the asymptotic body weight, and b is the exponent of the 

length-weight relationship W = a Lb. This exponent is typically close to three (Froese 2006) and was set in 

the subsequent models to b = 3 to facilitate integration.    

As derivative of equation 3, the instantaneous growth rate dW/dt is given by 

𝑑𝑑𝑊𝑊
𝑑𝑑𝑡𝑡� = 3 𝐾𝐾 𝑊𝑊∞ ��1 − 𝑒𝑒−𝐾𝐾(𝑜𝑜−𝑜𝑜0)�

2
− �1 − 𝑒𝑒−𝐾𝐾(𝑜𝑜−𝑜𝑜0)�

3
�          (A4) 

This growth rate has a maximum at 0.296 W∞ with a corresponding body length of 2/3 L∞ if b = 3. The 

corresponding age at maximum growth rate is  

𝑡𝑡max𝑑𝑑𝑑𝑑/𝑑𝑑𝑜𝑜 = ln (3)
𝐾𝐾

+ 𝑡𝑡0           (A5)  

The body weight Wopt where unexploited cohort biomass reaches a maximum is given by Holt (1958) as  

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑊𝑊∞�
𝐾𝐾

𝐾𝐾+𝑀𝑀3
�
3

              (A6) 

where M is the average rate of natural mortality. The length Lopt corresponding to Wopt is given by 

Beverton (1992) as 
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𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐿𝐿∞
3

3+𝑀𝑀𝐾𝐾
           (A7) 

The age at the peak of unexploited cohort biomass topt is given by replacing Lt in Equation 2 with Lopt.   

𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 =
ln�3𝐾𝐾+𝑀𝑀𝑀𝑀 �

𝐾𝐾
+ 𝑡𝑡0              (A8) 

The mean age in the spawning stock is given by  

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑡𝑡𝑚𝑚 + 1
𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

           (A9) 

where tm is the mean age at first maturity and Zmean is the mean total annual mortality rate experienced 

after reaching tm. The inverse of Zmean is the average life expectancy (Charnov 1993) after reaching tm, or 

the mean duration of the reproductive phase. The mean age of spawners in the unexploited stock is 

obtained by setting Zmean = M in Equation 9. If fishing starts before or at maturity, then Zmean = M + F, 

where F is the rate of mortality caused by fishing. If fishing starts after maturity, then Zmean can be 

approximated from 

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐹𝐹 + 𝑀𝑀 − 𝐹𝐹 𝑀𝑀 𝑡𝑡𝑐𝑐 + 𝐹𝐹 𝑀𝑀 𝑡𝑡𝑚𝑚           (A10) 

where tc is the age at first capture. 

The mean length Lmean in the catch and in the exploited part of the population is corresponding to 

(Beverton and Holt, 1957)  

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐿𝐿∞ �1 − (𝐹𝐹+𝑀𝑀)𝑚𝑚−𝐾𝐾(𝑡𝑡𝑐𝑐−𝑡𝑡0)

𝐹𝐹+𝑀𝑀+𝐾𝐾
�              (A11) 

Replacing age tc with length at first capture Lc, based on equation 2, and using the ratios F/M and M/K 

gives 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐿𝐿∞ �1 − 𝐹𝐹/𝑀𝑀+1
𝐹𝐹/𝑀𝑀+1+ 1

𝑀𝑀/𝐾𝐾
�1 − 𝐿𝐿𝑐𝑐

𝐿𝐿∞
��           (A12) 

Setting Lmean = Lopt and solving for Lc gives the length at first capture Lc_opt that results in the mean length 

of Lopt in the catch and in the exploited part of the population (solid curve in Fig. 1, with M/K=1.5).    

𝐿𝐿𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐿𝐿∞
2+3 𝐹𝐹/𝑀𝑀

(1+𝐹𝐹/𝑀𝑀)(3+𝑀𝑀/𝐾𝐾)
         (A13) 

The age tc_opt corresponding to Lc_opt is obtained by inserting equation 13 into equation 2 

𝑡𝑡𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜 =
ln�(𝐹𝐹+𝑀𝑀)(3𝐾𝐾+𝑀𝑀)

𝑀𝑀(𝐹𝐹+𝐾𝐾+𝑀𝑀) �

𝐾𝐾
+ 𝑡𝑡0           (A14) 
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Equations 13 and 14 are new and can be used to implement rule 3 as proposed in this study. 

An index of  yield-per-recruit expressed as a function of the length at first capture Lc is given by Beverton 

and Holt (1966) as 

𝑌𝑌′

𝑅𝑅
=  𝐹𝐹/𝑀𝑀

1+𝐹𝐹/𝑀𝑀
 (1 − 𝐿𝐿𝑐𝑐/𝐿𝐿∞)𝑀𝑀/𝐾𝐾  �1− 3(1−𝐿𝐿𝑐𝑐/𝐿𝐿∞)

1+ 1
𝑀𝑀 𝐾𝐾(1⁄ +𝐹𝐹/𝑀𝑀)

+ 3(1−𝐿𝐿𝑐𝑐/𝐿𝐿∞)2

1+ 2
𝑀𝑀 𝐾𝐾(1⁄ +𝐹𝐹/𝑀𝑀)

  − (1−𝐿𝐿𝑐𝑐/𝐿𝐿∞)3

1+ 3
𝑀𝑀 𝐾𝐾(1⁄ +𝐹𝐹/𝑀𝑀)

 �   (A15) 

The relative length at first capture Lc/L∞ that results in the maximum Y’/R for a given fishing intensity 

F/M can only be obtained iteratively from Equation 15 (dashed curve in Fig. 1). 

 

The theoretical maximum yield-per-recruit can be obtained with infinite fishing mortality at Lc = Lopt. It 

was named potential yield Ypot/R (Holt 1958). An index of the potential yield-per-recruit is given by Holt 

(1958) as 

𝑌𝑌′𝑝𝑝𝑝𝑝𝑡𝑡
𝑅𝑅

= max 𝑌𝑌′

𝑅𝑅
= � 𝑀𝑀/𝐾𝐾

3+𝑀𝑀/𝐾𝐾
�
𝑀𝑀/𝐾𝐾

 � 3
3+𝑀𝑀/𝐾𝐾

�
3

        (A16) 

The ratio Y’/Y’pot is equal to Y/Ypot and then indicates yield relative to the theoretical maximum yield Ypot, 

i.e., the fact that both yields were indices need not be considered anymore. This ratio was used for 

drawing relative yield in Figs. 2, 3 and 5.  

 

An index of catch per unit of effort (CPUE’/R) is obtained by dividing Equation 15 by the fishing intensity 

F/M, assuming that F is directly proportional to effort. Since CPUE is proportional to biomass in the 

exploited phase of the stock, Equation 17 represents relative CPUE’/R as well as an index of exploited 

biomass per recruit B’/R (Beverton and Holt 1966): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸′

𝑅𝑅
= 𝑌𝑌′/𝑅𝑅

𝐹𝐹/𝑀𝑀
=  1

1+𝐹𝐹/𝑀𝑀
 (1 − 𝐿𝐿𝑐𝑐/𝐿𝐿∞)𝑀𝑀/𝐾𝐾  �1 − 3(1−𝐿𝐿𝑐𝑐/𝐿𝐿∞)

1+ 1
𝑀𝑀 𝐾𝐾(1⁄ +𝐹𝐹/𝑀𝑀)

+ 3(1−𝐿𝐿𝑐𝑐/𝐿𝐿∞)2

1+ 2
𝑀𝑀 𝐾𝐾(1⁄ +𝐹𝐹/𝑀𝑀)

  − (1−𝐿𝐿𝑐𝑐/𝐿𝐿∞)3

1+ 3
𝑀𝑀 𝐾𝐾(1⁄ +𝐹𝐹/𝑀𝑀)

 � (A17) 

The relative biomass per recruit without fishing is a function of relative length at recruitment r = Lr/L∞ 

and M/K and is given by 

 𝐵𝐵0
′

𝑅𝑅
= (1 − 𝑟𝑟)

𝑀𝑀
𝐾𝐾 �1 − 3(1−𝑟𝑟)

1+ 1
𝑀𝑀 𝐾𝐾⁄

+ 3(1−𝑟𝑟)2

1+ 2
𝑀𝑀 𝐾𝐾⁄

  − (1−𝑟𝑟)3

1+ 3
𝑀𝑀 𝐾𝐾⁄

�        (A18) 

The relative biomass in the exploited phase of the population if no fishing takes place is given by 
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𝐵𝐵0′>𝐿𝐿𝑐𝑐
𝑅𝑅

= (1 − 𝐿𝐿𝑐𝑐/𝐿𝐿∞)
𝑀𝑀
𝐾𝐾 �1 − 3(1−𝐿𝐿𝑐𝑐/𝐿𝐿∞)

1+ 1
𝑀𝑀 𝐾𝐾⁄

+ 3(1−𝐿𝐿𝑐𝑐/𝐿𝐿∞)2

1+ 2
𝑀𝑀 𝐾𝐾⁄

  − (1−𝐿𝐿𝑐𝑐/𝐿𝐿∞)3

1+ 3
𝑀𝑀 𝐾𝐾⁄

�       (A19) 

The total biomass of the exploited population relative to the unexploited population B/B0 can then be 

obtained from 

𝐵𝐵
𝐵𝐵0

=
𝐵𝐵0′
𝑅𝑅  − 𝐵𝐵0

′ >𝐿𝐿𝑐𝑐
𝑅𝑅  +𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸

′

𝑅𝑅
𝐵𝐵0′
𝑅𝑅

              (A20) 

Equation 20 was used to draw relative biomass in Fig. 2, assuming an M/K ratio of 1.5. The fishing 

mortality F0.5B that results in half of B0 (Rule 2) when fishing starts at Lc_opt was obtained iteratively as 

F0.5B = 0.86·M.  

The slope at the origin of the yield-per-recruit curve Q/R is given by Holt (Holt 1958) as 

𝑄𝑄
𝑅𝑅� = 6 𝑑𝑑∞ 𝐾𝐾3

𝑀𝑀 (𝑀𝑀+𝐾𝐾) (𝑀𝑀+2𝐾𝐾)(𝑀𝑀+3𝐾𝐾)
          (A21) 

The value of F where the slope of the Y/R curve equals 0.1 Q/R or the value of F/M where the increase in 

Y`/R is close to 1/10th of the increase near the origin, is the arbitrary fisheries reference point F0.1.  

The relative mean body weight in the catch and in the exploited phase of the population is given by 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑∞

=  1 − 3(1−𝐿𝐿𝑐𝑐/𝐿𝐿∞)

1+ 1
𝑀𝑀 𝐾𝐾(1⁄ +𝐹𝐹/𝑀𝑀)

+ 3(1−𝐿𝐿𝑐𝑐/𝐿𝐿∞)2

1+ 2
𝑀𝑀 𝐾𝐾(1⁄ +𝐹𝐹/𝑀𝑀)

  − (1−𝐿𝐿𝑐𝑐/𝐿𝐿∞)3

1+ 3
𝑀𝑀 𝐾𝐾(1⁄ +𝐹𝐹/𝑀𝑀)

       (A22) 

 

Mean body weight above a certain length Lc in the unexploited population is given by 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑∞

=  1 − 3(1−𝐿𝐿𝑐𝑐/𝐿𝐿∞)

1+ 1
𝑀𝑀 𝐾𝐾⁄

+ 3(1−𝐿𝐿𝑐𝑐/𝐿𝐿∞)2

1+ 2
𝑀𝑀 𝐾𝐾⁄

  − (1−𝐿𝐿𝑐𝑐/𝐿𝐿∞)3

1+ 3
𝑀𝑀 𝐾𝐾⁄

       (A23) 

It is argued in the main text that a value of 1.5 for the M/K ratio would increase fitness. Under this 

evolutionary M/K ratio, several equations simplify considerably. 

 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 = 0.67 𝐿𝐿∞             (A24) 

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 =  0.296 𝑊𝑊∞              (A25) 

𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 = ln (3)
𝐾𝐾

+ 𝑡𝑡0 =  𝑡𝑡max𝑑𝑑𝑑𝑑/𝑑𝑑𝑜𝑜 ≈
1.1
𝐾𝐾
≈ 1.65

𝑀𝑀
          (A26) 

𝐿𝐿𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐿𝐿∞
4+6 𝐹𝐹/𝑀𝑀
9+9 𝐹𝐹/𝑀𝑀

              (A27) 
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𝑡𝑡𝑐𝑐_𝑜𝑜𝑜𝑜𝑜𝑜 =
3 ln�9(𝐹𝐹/𝑀𝑀+1)

3𝐹𝐹/𝑀𝑀+5 �

2
+ 𝑡𝑡0            (A28) 

In data-poor situations the F/M ratio can then be approximated from the mean length in the catch. 

𝐹𝐹
𝑀𝑀

= 2(𝐿𝐿∞−𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
3(𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝑐𝑐)

− 1          (A29) 

The theoretical mean length in the catch where F=M can be estimated from 

𝐿𝐿𝐹𝐹=𝑀𝑀 = 3𝐿𝐿𝑐𝑐+𝐿𝐿∞
4

           (A30) 
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