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Introduction
There is a recognized need for new methods with modest data

requirements to provide preliminary estimates of stock status for

data-limited stocks (e.g. Rudd and Thorson, 2018). Froese et al.

(2018) provide such a method, which derives estimates of relative

stock size from length frequency (LF) data of exploited stocks.

They show that their length-based Bayesian biomass estimation

method (LBB) can reproduce the “true” parameters used in simu-

lated data and can approximate the relative stock size as estimated

independently by more data-demanding methods in 34 real

stocks.

However, in a comment on LBB, Hordyk et al. (2019) claim

(i) that the master equation of LBB is incomplete because it does

not correct for the pile-up effect caused by aggregating length

measurements into length classes or “bins”, (ii) that LBB is highly

sensitive to equilibrium assumptions and wrongly uses maximum

observed length (Lmax) for guidance in setting a prior for the esti-

mation of asymptotic length (Linf), and (iii) that the default prior

used by LBB for the ratio between natural mortality and somatic

growth rate (M/K) of 1.5 (SD¼ 0.15) is inadequate for many

exploited species. These comments are addressed below.

Understanding the pile-up effect
To understand the pile-up (Baranov, 1918) of abundance obser-

vations in length classes used as bins in LF analyses (van Sickle,

1977; Pauly, 1984; Hordyk et al., 2019), let us consider a thought

experiment where 1000 post-larval fish of 0.5 cm length at

0.1 years of age are released in a pond. All individuals are assumed

to have identical growth, with Linf¼ 100 cm, K¼ 0.133 year�1,

and t0¼ –0.0624 year. Natural mortality in the pond is assumed

as a constant M¼ 0.2 year�1 across all life stages. Fishing is con-

ducted continuously with a gear of trawl-like selectivity retaining

50% of individuals of 50 cm length and 95% of individuals of

55 cm length. Mortality caused by fishing is set at F¼ 0.2 year�1.

Two hypothetical sampling strategies are applied, which obtain

accurate counts of the numbers of individuals that are vulnerable

to the fishing gear without harming or removing individuals. The

first sampling strategy involves taking samples at time-intervals of

0.1 year and is called “fixed-time” sampling. The second strategy

takes samples at intervals corresponding to the time required by

the fish to grow 0.5 cm in length and is called “fixed-length” sam-

pling. If the numbers obtained by these two sampling strategies

are plotted over length and the observations are connected by

smoothed curves, they give identical continuous representations

of vulnerable individuals at length (see Figure 1a, where the

fixed-length-based measurements are represented by a curve and

the fixed-time-based measurements are represented by dots,

which exactly overlay the curve).

For practical reasons, it is common to aggregate frequencies

that fall within a certain length range, i.e. a length class or bin. If,

for example, observed fixed-length-based frequencies are summed

up in bins of 2 cm width, then four observations of 0.5 cm differ-

ence in lengths will fall into the same bin. The resulting histogram

is shown in Figure 1b, and its shape is a good representation of the

continuous LF, represented by the thin overlayed age-based curve.

However, if the same aggregation is done with the fixed-time-

based observations, then fewer than four observations will fall

into length bins at lower length, and increasingly more than four

observations will fall into bins at larger lengths. This leads to a

distortion of the true LF distribution, as indicated by the dots in

Figure 1b. Applying the correction proposed by Hordyk et al.

(2019) to the fixed-time-based frequencies does indeed account

for this pile-up effect, as can be seen in Figure 1c, where the cor-

rected continuous frequency curve provides a good fit for dots
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resulting from the uneven accumulation of fixed-time frequencies

in length bins of the same width.

Thus, the “continuous time population model” proposed by

Hordyk et al. (2019) as universally applicable to LF data assumes

frequent sampling at small time-intervals. If such sampling is

done across cohorts instead of following a single cohort, then the

continuous time population model also assumes continuous

recruitment.

But, is continuous sampling a good and general representation

of the real sampling effort behind available LF data? For example,

if the cohort in the thought experiment is sampled only once per

year, the pile-up effect disappears and the frequencies reflect the

original unbiased distribution (Figure 1d). Applying a correction

for pile-up to these data would introduce a bias that overesti-

mates exploitation rate and thus underestimates relative stock

size.

Figure 1. Length frequencies for a hypothetical cohort showing the effects of different sampling and aggregation schemes. (a) Frequencies
observed at sampling intervals of 0.5 cm, represented by the black curve, and frequencies observed at 0.1 year intervals, represented by dots.
(b) Histogram representing the fixed-length-interval frequencies aggregated in bins of 2 cm width, matching the original frequencies shown in
(a), as indicated by the overlaid curve. The dots indicate the aggregation of the fixed-time-interval frequencies. (c) A replication of (b), but
with an overlaid curve that accounts for the pile-up effect in the fixed-time-interval frequencies. (d) Replication of the histogram of (b). The
dots indicate accumulated frequencies based on fixed-time-interval samples that were taken annually over the life span of the cohort, where
bins without circle did not contain observations. Note that, in this case, there is no bias caused by the pile-up effect.
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In the real world, sampling across cohorts is the standard,

and both sampling schemes and recruitment are usually not

continuous. Also, fish growth and mortality in the real world

are not deterministic, and different assumptions about the co-

variation of Linf, K, and M lead to different distributions of

length-at-age and consequently to different survival schemes

under length-based gear selection. Simulated data that reflect

the assumptions of the model will always result in better fits

than data generated with deviating assumptions (e.g. Hordyk

et al., 2016). In other words, while simulations are important

to verify that a model can reproduce the “true” parameter

values and to test for sensitivities and limits of applicability,

real-world data are needed to evaluate the usefulness of a model

in comparison with results obtained with other, data-rich

models.

Supplementary Tables S1 and S2 show an evaluation of ex-

ploitation and stock status based on (i) the original LBB master

equation, (ii) the LBB equation with pile-up correction, and (iii)

the LBSPR method of Hordyk et al. (2016) proposed by Hordyk

et al. (2019) as an alternative to LBB, with all compared with re-

spective estimates provided by independent assessments. The

results are summarized in Table 1. As can be seen, both the LBB

with pile-up correction and the LBSPR method gave less satisfac-

tory results than the original (uncorrected) LBB master equation.

Biased performance of LBSPR was also reported by Huynh et al.

(2018).

Froese et al. (2018, pp. 2011 and 2012) stress that “LBB esti-

mates represent the average F/M over the past years, back to

when the fish now in the largest length class became vulnerable to

fishing” and F/M estimates are, therefore, “not recommended as

reliable proxies for current fishing pressure.” Also, in the inde-

pendent stock assessments used in the comparison, Fmsy is often

larger than M, thus explaining, in part, the significant positive

differences found in 56% of the cases when LBB estimates of F/M

were compared with independent estimates of F/Fmsy (Table 1

and Supplementary Table S2). The target result of LBB is stock

status as expressed by current biomass relative to unexploited

biomass (B/B0) or relative to the biomass that can produce maxi-

mum sustainable yields (B/Bmsy). These LBB estimates are similar

to the independent stock status estimates in 86% of the cases

(Table 1 and Supplementary Table S2). In contrast, for the cor-

rected LBB, only 57% of the stock status estimates were similar,

and for LBSPR, less than half (48%). Note that LBSPR gives esti-

mates of spawning potential ratio (SPR), where values below 0.2

(�0.5 B/Bmsy) indicate depletion and values above 0.4 (�1.0 B/

Bmsy) indicate good stock status. Note also that the 95% confi-

dence limits provided by LBSPR are unrealistically narrow,

sometimes close to deterministic, which partly explains their very

low matching score.

The 34 stocks used in the evaluation were temperate and sub-

tropical species with annual peaks in recruitment and often sea-

sonal rather than continuous sampling schemes (Supplementary

Table S1). Results may have been different if tropical species with

more continuous recruitment (Pauly and Navaluna, 1983) and

sampling schemes had been analysed.

The new LBB version that is available from https://oceanrep.

geomar.de/44832/, therefore, contains three options: (i) use the

original LBB equation, (ii) correct for the pile-up effect, or (iii)

let the Bayesian model determine the degree of correction based

on the best fit to the available data.

Sensitivity of LBB results to assumed or estimated
values of Linf
Hordyk et al. (2019) correctly note that LBB results, similar to

other length-based methods, are sensitive to assumptions about

asymptotic length Linf, and that unrealistically high values of Linf

lead to an overestimation of exploitation rate, and vice versa. In

LBB, asymptotic length is not a required input, but is estimated

by the Bayesian model. A default prior for Linf is derived by a

least-squares regression of the fully selected LF data aggregated

across years. Alternatively, “[i]f a good estimate of Linf is available

from an independent study, this value can be introduced by the

user, [. . .]” (Froese et al., 2018, p. 2005). Care must then be taken

to perform this potentially subjective selection of Linf as guided by

pre-established, objective criteria, such as taking the median of

existing studies for the area from FishBase (Froese and Pauly,

2018), ignoring studies previously marked by FishBase staff as

questionable.

Hordyk et al. (2019) suggest that the maximum length ob-

served in LF data provides “an upward-biased estimator” of Linf

and that, as a rule, Linf should be smaller than Lmax. As stated

above, LBB does not require a fixed value of Linf as input, but

rather estimates Linf from the available data, while considering a

prior derived either from aggregated LF data or provided by the

user. Comparing 199 estimates of Linf derived from length-at-

age data with observed Lmax for the respective stocks for 155

species in 51 countries shows that Lmax is actually a reasonable

predictor of Linf (Figure 2), accounting for 96% of the variability

in the data, with slope and intercept not significantly different

from a 1:1 line. In other words, these data, which comprise all

stocks in FishBase 06/2018 (Froese and Pauly, 2018), where sex,

country, locality, and length-type were identical for indepen-

dent estimates of Linf and Lmax, refute the claim by Hordyk et al.

(2019) that Lmax is an upward-biased estimator of Linf. While

the prior for Linf does influence the results of LBB, this is actu-

ally welcome, because reasonable prior information about Linf is

much easier to obtain than, for example, prior information on

growth or mortality rates. However, to better reflect the distri-

bution of Lmax values around the 1:1 line in Figure 2, the new

version of LBB uses the median Lmax across the analyzed years

rather than the overall maximum length as the starting value

for the least-squares regression that estimates the prior for Linf

and Z/K.

On the variability of M/K
Hordyk et al. (2019) claim that Froese et al. (2018) misrepresent

the analysis of potential M/K values in Hordyk et al. (2015).

Table 1. Performance comparison of three length-based methods
against estimates from independent stock assessments.

Method Different F/Fmsy (%) Different B/Bmsy (%)

LBB 18 of 32 (56.3) 3 of 21 (14.3)
LBB (corr.) 25 of 32 (78.1) 9 of 21 (42.8)
LBSPR 27 of 32 (84.3) 11 of 21 (52.2)

Non-overlapping 95% confidence limits were used as indication of signifi-
cantly different estimates and are shown as numbers and percentage. Note
that 40% SPR was taken as a proxy for Bmsy/B0 and, accordingly, SPR estimates
of LBSPR were multiplied by 2.5 to attain B/Bmsy. F/M estimates produced by
the three models were used as proxy for the comparison with F/Fmsy esti-
mates provided by the independent models.
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While that study indeed explores a very wide range of hypotheti-

cal M/K values, it clearly states (p. 226) that “[f]or a species

that conforms to the Beverton–Holt invariant M/K� 1.5,

the maximum size (Lmax; i.e. the length at [maximum age] tmax)

is 0.95 Linf.” This confirms the rule of thumb proposed in Froese

et al. (2018, p. 2009) that “[. . .] in LF distributions where only

few individuals survive to approximate Linf, it is reasonable to as-

sume an M/K prior of 1.5.”

If users of LBB have strong evidence for M/K values outside

of the assumed default range of 1.2–1.8, they can easily provide

their own M/K prior value. Froese et al. (2018, pp. 2007 and

2012) state explicitly that LBB shall only be used on “[s]uitable

LF samples that show an asymmetric pattern” similar to the

examples given in that paper and that LBB shall explicitly not

be used on LF samples that “show an unusual normal distribu-

tion of high frequencies around reasonable estimates of Linf,”

because such distribution violates the assumption of continu-

ous growth. Thus, the upper and lower left frequency patterns

shown in Figure 1 of Hordyk et al. (2019), which incidentally

are not supported by any real-world data that the authors of

this study are aware of, were already explicitly excluded from

LBB analysis.

Consideration of recruitment in LBB
Hordyk et al. (2019) incorrectly suggest that the relative biomass

estimates of LBB do not account for reduced recruitment at de-

pleted stock sizes and that “[LBB] estimates of Fmsy are equivalent

to estimates of Fmax from a conventional yield-per-recruit model

[. . .].” Instead, LBB assumes a hockey-stick stock–recruitment re-

lationship (Barrowman and Myers, 2000; Froese et al., 2016),

where relative yield per recruit and thus productivity declines lin-

early with biomass if predicted biomass is less than half of the

proxy used for B/Bmsy. Also, Froese et al. (2018) warned (even in

their abstract) that LBB results will be misleading “if LFs resulting

from the interplay of growth and mortality are masked by strong

recruitment pulses.” Finally, LBB does not estimate Fmsy or Fmax,

but F/M.

Summary
In summary, we thank Hordyk et al. (2019) for pointing out a ty-

pographical error in one of our equations, which has meanwhile

been fixed in the online version of Froese et al. (2018) and

addressed in a corrigendum for the printed version. We agree

with Hordyk et al. (2019) that accounting for the pile-up effect in

binned LF samples may be appropriate in, for example, tropical

species with continuous reproduction, and we have provided for

such correction as an option in the latest version of the LBB soft-

ware. We note, however, that this correction as well as the LBSPR

method of Hordyk et al. (2016) proposed by Hordyk et al. (2019)

as an alternative to LBB leads to strong overestimation of exploi-

tation and underestimation of stock status when compared with

independent assessments of 34 real stocks from temperate and

subtropical areas.

As for the points raised by Hordyk et al. (2019) with regard to

default priors for Linf and M/K, we maintain that these defaults

are adequate for a wide range of exploited species. They can be

easily replaced by users if better information is available.

Warnings not to use LBB if LF samples do not show the typical

asymmetric pattern were already provided in the original LBB pa-

per and are repeated here.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.

Figure 2. Scatterplot of asymptotic length (Linf) as a function of maximum length (Lmax), for 199 stocks of 155 species, where Linf and Lmax

were reported independently for the same sex, length-type, country, and locality. A linear regression gives log10 Linf¼ 0.0345þ 0.991� log10

Lmax, r2¼ 0.955, with 95% confidence limits of the slope (0.961–1.02) including 1.0 and 95% confidence limits of the intercept (–0.0158 to
0.0848) including zero, i.e. the regression is not significantly different from the dashed 1:1 line. The dotted lines indicate 0.5:1 and 1.5:1,
respectively, to put the log-scale in perspective.
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1: 81–128. (In Russian)

Barrowman, N. J., and Myers, R. A. 2000. Still more
spawner-recruitment curves: the hockey stick and its generaliza-
tions. Canadian Journal of Fisheries and Aquatic Sciences, 57:
665–676.

Froese, R., Coro, G., Kleisner, K., and Demirel, N. 2016. Revisiting
safe biological limits in fisheries. Fish and Fisheries, 17: 193–209.

Froese, R., and Pauly, D. (Eds.) 2018. FishBase. Quantitative
Aquatics, Los Ba~nos, Laguna, Philippines World Wide Web
Electronic Publication. www.fishbase.org (last accessed 16
November 2018).

Froese, R., Winker, H., Coro, G., Demirel, N., Tsikliras, A. C.,
Dimarchopoulou, D., Scarcella, G., et al. 2018. A new approach
for estimating stock status from length frequency data. ICES
Journal of Marine Science, 75: 2004–2015.

Hordyk, A. R., Ono, K., Prince, J. D., and Walters, C. J. 2016. A sim-
ple length-structured model based on life history ratios and incor-
porating size-dependent selectivity: application to spawning
potential ratios for data-poor stocks. Canadian Journal of
Fisheries and Aquatic Sciences, 73: 1787–1799.

Hordyk, A., Ono, K., Valencia, S., Loneragan, N., and Prince, J. 2015.
A novel length-based empirical estimation method of spawning
potential ratio (SPR), and tests of its performance, for small-scale,
data-poor fisheries. ICES Journal of Marine Science, 72: 217–231.

Hordyk, A. R., Prince, J. D., Carruthers, T. R., and Walters, C. J.
2019. Comment on “A new approach for estimating stock status
from length frequency data” by Froese et al. (2018). ICES Journal
of Marine Science, doi:10.1093/icesjms/fsy168.

Huynh, Q. C., Beckensteiner, J., Carleton, L. M., Marcek, B. J.,
Vaskar Nepal, K. C., Peterson, C. D., Wood, M. A., et al. 2018.
Comparative performance of three length-based mortality estima-
tors. Marine and Coastal Fisheries, 10: 298–313.

Pauly, D. 1984. Fish Population Dynamics in Tropical Waters: A
Manual for Use with Programmable Calculators. International
Center for Living Aquatic Resources Management, Manila,
Philippines, ICLARM Studies and Reviews, 8. 325 pp.

Pauly, D., and Navaluna, N. A. 1983. Monsoon-induced seasonality
in the recruitment of Philippine fishes. In Proceedings of the ex-
pert consultation to examine changes in abundance and species
composition of neritic fish resources, San José, Costa Rica, 18-–29
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