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Summary

A Bayesian hierarchical approach is presented for the esti-

mation of length-weight relationships (LWR) in fishes. In
particular, estimates are provided for the LWR parameters
a and b in general as well as by body shape. These

priors and existing LWR studies were used to derive
species-specific LWR parameters. In the case of data-poor
species, the analysis includes LWR studies of closely related

species with the same body shape. This approach yielded
LWR parameter estimates with measures of uncertainty for
practically all known 32 000 species of fishes. Provided is a
large LWR data set extracted from www.fishbase.org, the

source code of the respective analyses, and ready-to-use
tools for practitioners. This is presented as an example of a
self-learning online database where the addition of new

studies improves the species-specific parameter estimates,
and where these parameter estimates inform the analysis of
new data.

Introduction

For convenience, size in fishes is often measured in body

length. However, management for fisheries or conservation
requires information about body weight for regulation of
catches and estimation of biomass. Weight (W) can be pre-

dicted from length (L) with the help of length-weight
relationships (LWR) of the form W = a Lb, where parameter
b indicates isometric growth in body proportions if b ~ 3,

and a is a parameter describing body shape and condition if
b ~ 3 (Froese, 2006). FishBase (Froese and Pauly, 2012) has
compiled LWR parameters for thousands of species of fishes.

However, usage of published LWRs brings up three
questions: i) If there are many studies for a species, how can
this information be meaningfully combined into a joint
LWR? ii) If there is only one study for a given species, how

well does this study represent the variability that is to be
expected? iii) How can existing studies inform a new LWR
estimate derived from new data? The aim of this paper is to

apply hierarchical Bayesian inference to answer these ques-
tions. We present web tools that facilitate the application of
the methods by practitioners and which provide the basis for

a self-learning online database.

Materials and methods

We first describe our general approach to the analysis and
then describe in more detail the data and the statistical
models.

General approach

Bayesian methods combine existing knowledge (prior proba-

bilities) with additional knowledge derived from new data
(the likelihood function). This results in updated knowledge
(posterior probabilities), which can be used as priors in

subsequent analyses and thus provide learning chains in sci-
ence (Kuikka et al., 2013). Note that the standard deviation
(SD) of a posterior distribution for a parameter represents

the uncertainty about the sampling distribution and thus is a
standard error (SE) by definition.
We first established broad overall priors for parameters a

and b, based on textbooks and reviews (step 1 below). Pos-

terior distributions for model parameters were then estimated
for fishes in general by analyzing the distribution of a and b
in a large data set of LWR studies (step 2). The estimated

posterior distributions were further refined by grouping fish
species into body-shape groups, e.g. from eel-like to short
and deep, and estimating the parameters for each individual

group (step 3). The body-shape posteriors were used as
priors for the analysis of studies done for a given species
(step 4). In data-poor species, the model was used to learn
also from studies done on related species with the same body

shape, i.e. application of multivariate hierarchical Bayesian
inference, treating each species as its own hierarchical level
(step 5). As a result, LWR parameter estimates were

obtained for practically all fish species, with indication of
uncertainty of the parameters and of the weight predicted
from length. These species-specific parameters can then be

applied directly, or they can serve as priors in the analysis of
new weight-at-length data (step 6). FishBase (www.fishbase.
org) contains online tools that incorporate these steps and

facilitates the analysis of existing parameters and of new
weight-at-length data (see also Web Tools section in the
Appendix).

Step 1: getting overall priors for LWR parameters a and b,

based on the literature. Parameter b is the slope of a regres-
sion line over log-transformed weight-at-length data. It is
considered to be normally distributed (Carlander, 1969).

Parameter b should average approximately three in species
that do not change body shape as they grow (Spencer,
1864–1867) and usually falls between 2.5 and 3.5 (Carlander,
1969). This information is interpreted here as a normally dis-

tributed prior for b with mean = 3 and SD = 0.5. Parameter a
is the intercept of a regression line over log-transformed
weight-at-length data. It is considered to be log-normally dis-

tributed (Carlander, 1977) and reflects the body-shape of the
species (Froese, 2006). With weight in gram and length in cen-
timeter, a = 0.01 represents a fusiform fish, bracketed by
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a = 0.001 in eel-like fish and a = 0.1 in spherical fish (Froese,
2006). This information is here interpreted as a normally dis-
tributed prior of log10(a) with mean = �2 and SD = 1.

Step 2: getting parameter estimates across all available LWR

studies. LWR studies compiled in FishBase were used to
obtain across-all-studies distributions for parameters a and b.
A score reflecting the reliability of a study (see below) was used

as weighting factor. The overall priors from step 1 were used
in this analysis. For the measurement error in length and
weight an uninformative prior was assumed (Gelman, 2006).
In this analysis, a and b estimates for each individual

species were considered as co-varying within the bounds of
a species-specific body plan. However, for the across species
analysis, a and b were considered as not correlated (see

also Results and discussion). Looking at within and across
species variability allowed for decomposing the total vari-
ability into measurement error and predictive error, where

the latter is a combination of true natural variability and
the error resulting from the LWR model only approximat-
ing the true relationship between length and weight. The

predictive posterior parameter distributions arising from
this across-all-studies-and-species analysis can be used as
priors in single species analysis where body shape informa-
tion is missing or does not match any of the shapes defined

below.

Step 3: getting parameter estimates by body shape group. -
Based on available drawings, photos and/or morphometric

data, FishBase staff has assigned species to the body shape
groups of eel-like, elongated, fusiform, and short & deep. The
approach described in step 2) was used for each of these
body shape groups. The measurement and predictive error

distributions resulting from this analysis were used as respec-
tive priors in the subsequent steps. The parameter and error
distributions resulting from this analysis were used as priors

for single species analysis within the respective body shape
group (see below).

Step 4: getting joint parameter estimates for a species. For
species with many available LWR studies, the parameters a

and b from these studies were considered as negatively corre-
lated due to well-known correlations between intercept and
slope induced by common estimation methods (Peters, 1983).

The a and b values were analyzed together with the priors
from the respective body shape group (see Single-Species
model below). The resulting species-specific parameter

estimates can then either be used directly for predicting
weight from length, or they can serve as priors for a new
LWR study.

Step 5: getting parameter estimates for species with few avail-

able studies. For species with few available studies (e.g. <5),

information from related species (species in the same Genus,
Subfamily or Family and with the same body shape) was
used in a hierarchical analysis. First, parameters were derived
for every related species, as in step 4). These parameters,

together with the body shape priors, were then used to
derive the parameter estimates for the target species (see
Few-Studies model below). The resulting species-specific

parameter estimates can then either be used directly for pre-
dicting weight from length, or they can serve as priors for a
new LWR study.

Step 6: using parameter estimates as priors in the analysis of

new weight-at-length data. For analysis of new weight-
at-length data, the posteriors of the parameter analysis for
the respective species (steps 4 or 5) can be used as priors.

If no previous LWR study exists for the species, then the
body shape priors (from step 3) can be treated as if they
were an existing study, and the parameter analysis of step 5

can be run to update the body shape priors with information
from related species. If there are no LWR estimates for
related species, the body shape priors can be used instead of

species-specific priors. Additionally, if no previous LWR
study exists and the body shape does not match the available
choices, then generic priors (from step 2) can be used. The
analysis of new weight-at-length data is done with a Bayesian

linear regression of log10(W) as a function of log10(L),
weighted by number of individuals, with priors as indicated
above. The analysis assumes a raw data set that has been

cleansed beforehand of extreme outliers.

Data

For steps 2–5, LWR parameters compiled in FishBase 12/2012
were analyzed. We used only studies of species that had inde-
pendently assigned body shapes (eel-like, elongated, fusiform,

short & deep) and where length measurements were reported
in total length or fork length. Additionally, only studies where
the parameters were estimated with type-I linear regression of

log-transformed weights and lengths were included. Finally,
studies marked by FishBase staff as questionable were
excluded, a data filtering process that yielded 5150 studies for

1821 species (see Table 1).
We assigned scores (S) that represent data quality for each

study. These were subsequently used to downweight informa-

tion from studies that were deemed less reliable than others,
and ranged from 0.5 to 1 using the following scoring guide:

1 If a coefficient of determination (r2) was given by the
study, then S = r2.

2 Else, if the length range of the raw data was indicated,
then S = 0.7.

3 Else, if the number of measured specimens was >10, then

S = 0.6.
4 Else, S = 0.5.

Table 1
Weighted means and standard deviations of parameters a and b from 5150 LWR studies for 1821 species of fishes, by body shape. Geom.
mean = geometric mean and 95% range includes about 95% of observations

Body shape Mean log10(a) SD log10(a) Geom. mean a 95% range a Mean b SD b 95% range b n

Eel-like �2.99 0.175 0.00102 0.000464–0.00225 3.06 0.0896 2.88–3.24 162
Elongated �2.41 0.171 0.00389 0.00180–0.00842 3.12 0.0900 2.94–3.30 712
Fusiform �1.95 0.173 0.0112 0.00514–0.0245 3.04 0.0857 2.87–3.21 3478
Short & deep �1.70 0.175 0.0200 0.0182–0.0218 3.01 0.0905 2.83–3.19 798
All �2.00 0.313 0.0100 0.00244–0.0411 3.04 0.119 2.81–3.27 5150
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Thus, a high-quality study (i.e. with a high coefficient of
determination) received about double the score of a study
that merely presented the parameters a and b without addi-
tional information. This data file is available for download,

see Table 2.

Statistical models

We used the R statistical package with libraries r2jags (Su and
Yajima, 2012) and the JAGS sampler software (Plummer,

2003) for conducting the Bayesian analyses, called from the R
Statistical Environment (R Development Core Team, 2011).
These packages are open source and freely available on the

Internet. The models used in steps 2–6 above are described
below in more detail. Logarithmic transformation of length
and weight data can be done with any base. For convenience,
natural logarithms were used in the model description below.

In the R-code and the resulting graphs, base-10 logarithms
were used because this facilitates the reading of log-axes,
with log10(a) = �3 giving a = 0.001, log10(L) = 2 giving

L = 100 cm, etc. For presentation of the models, the conven-
tion was also adopted that Greek letters represent all parame-
ters, and Latin letters represent all data. Thus, in the

following section formally describing the models, a and b from
existing LWR studies are considered data, whereas a and b
represent the respective parameters estimated by the models.
We additionally specify that the character i is reserved for

indices.

The Body-Shape model

The Body-Shape model uses the species-specific measure of
as and bs for each available study is, as well as the associated

quality score Ss and binomial genus-species gss (the subscript
s stands for ‘study’, and each variable with subscript s has
an individual value for each observation in the database).

Each scientific name is associated with a body-shape, bsgs,
where igs is an index associated with each unique species (the
subscript gs standards for ‘genus-species’, and each variable
with subscript gs has an individual value for each unique

species in the database). The model estimates a ‘true’ but
unobserved value for each species in the dataset, log10(ags)
and bgs. These vary around their average value for a given

body-shape, abs and bbs, where ibs is an index associated with
each of four body-shape types (the variable bs standards for
‘body-shape’ and each variable with subscript bs has an indi-

vidual value for each unique body-shape in the database).
Parameters log10(ags) and bgs for each species vary around
the average value for their body shape according to a normal

distribution, with a separate variance s2loga and s2b for log10(a)
and b:

log10ðagsÞ�Normal
X4
ibs¼1

log10ðabsÞ � Iðbsgs ¼ ibsÞ; s2log a
 !

(1)

bgs �Normal
X4
ibs¼1

bbs � Iðbsgs ¼ ibsÞ; s2b
 !

(2)

where I(bsgs=ibs) is an indicator function that equals one when
bsgs equals ibs and zero otherwise, and NormalPnbs

ibs
log10ðabsÞ � Iðbsgs ¼ ibsÞ; s2log a

� �
is normal distribution

with mean
Pnbs

ibs
log10ðabsÞ � Iðbsgs ¼ ibsÞ and variance s2loga (we

define other normal distributions similarly).

Length-weight relationships parameter estimates are
known to be negative correlated (Froese, 2006), i.e. in a log-
log plot of weight over length for a given species, an increase

in the slope of the regression line will result in a decrease of
the intercept on the weight axis, and vice-versa. We
accounted for this correlation between log10(a) and b within

each study by specifying that study-specific observations vary
around the ‘true’ but unobserved species-specific value
according to a multivariate normal distribution.

log10ðasÞ;bsh i

�MVN
Xnspecies
igs¼1

log10ðagsÞIðgss ¼ igsÞ;
Xnspecies
igs¼1

bgsIðgss ¼ igsÞ
* +

;Rs

0
@

1
A
(3)

where Σs is the measurement error covariance for observa-

tion s, which is composed of measurement error variance
r2loga and r2b for log10(a) and b, as well as the correlation q in
measurement errors:

Rs ¼ S�2
s

r2log a qrlog arb
qrlog arb r2b

����
���� (4)

This measurement error covariance varies among studies

such that measurement errors are greater for low-scoring
studies. Using a multivariate distribution has previously been
shown to reduce the uncertainty of the parameter estimates

(Pulkkinen et al., 2011).
Parameters are given priors, as is necessary for any Bayesian

analysis. Specifically, standard deviation parameters sloga, sb,
rloga, and rb, were given initially broad inverse-gamma (0.001,
0.001) priors, and measurement error correlation q was given a
uniform negative prior from �0.99 to 0. Prior distributions
for each body shape abs and bbs were defined as described

previously.

Across-all-Observations-and-Species model

The model for all observations and species but without
body-shape is identical to the preceding Body-Shape model,

with one exception. Specifically, the vector bs is replaced
with a dummy vector 1, which has the value one for all
entries. This change implies that all species in this model

have the same value for log10(abs) and bbs. It consequently
provides an average value for log10(a) and b for species for
which the body-shape is unknown.

Table 2
R-code and data files used for graphs and tables can be downloaded
from http://oceanrep.geomar.de/21875/

Figure/Table R-code Data source

Figure 1 LWR_Stats_3.R BodyShape_3.csv,
also data from Table 1

Figure 2 SingleSpecies LWR_7.R BodyShape_3.csv
Figure 3 RelativesLWR_4.R BodyShape_3.csv
Table 1 + 2 BodyShapePar_v5.R BodyShape_3.csv
Table 3 RelativesLWR_4.R BodyShape_3.csv
Table 4 LW_data_v6.R Scophthalmus_maximus

_LW.csv
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The Few-Studies model

The Few-Studies model uses the same set of equations
(equations 1–4) as the Body-Shape model, but incorporates
changes. First, it replaces the broad priors for log10(ags) and
bgs with more informative priors estimated from the
previous Body-Shape analysis. Second, it replaces the unin-
formative priors for between-species (s2loga and s2b) and mea-
surement error variance (r2loga and r2b) with informative

priors. Specifically, it specifies a gamma distribution for the
standard deviation of between-species and measurement
error variability, and parameterizes it such that the mean

and standard deviation of this gamma distribution match
the posterior mean and standard deviation from the Body-
Shape model.

The Single-Species model

The Single-Species model uses a reduced set of equations

(equations 3–4) from the Body-Shape model. It assumes that
previous LWR studies for the species are sufficiently numer-
ous and informative so that no inclusion of data from other

related species is needed. Its uses priors for log10(a) and b
and for the standard deviation of measurement errors based
on the Body-Shape model.

The New Weight-at-Length-Data model

The model for new weight-at-length data uses the individual
observations of length lj and wj for nobs fish observations.
Specifically, it specifies the base-10 logarithm of weight as a
function of the base-10 logarithm of length:

log10ðwjÞ�Normal log10ðagsÞ þ bgs log10ðljÞ; r2logw
� �

(5)

where r2logw is the residual log-normal variance in the LWR.
We additionally specify that the priors for ags and bgs
match the estimated posteriors from the Few-Studies or

Single-Species models.

Results and discussion

We sought to estimate LWR parameter distributions for
log10(a) and b for a hypothetical species of a given body-shape,

while accounting for correlations between log10(a) and b for
observations within a given species, but not between species.
This distinction was made because clearly for a species with a
given body shape (which determines a) and a given life history

strategy how much this shape changes as the fish grows (which
determines b), intercept log10(a) and slope b cannot but
co-vary within the narrow bounds of log-transformed weight-

at-length data. Accounting for this negative correlation
reduces the uncertainty of the parameter estimates (Pulkkinen
et al., 2011). However, other species may have different body

shapes but the same growth strategy. For example, an eel will
have a thin, long body, which fills only a small fraction (= a) of
a cube with a length equal to the eel’s body length. In compari-

son, a boxy-shaped fish is likely to fill a substantial fraction of
its respective cube, resulting in a much higher value of a. This
high a, however, does not mean that the boxfish will have a
lower b than the eel. This reasoning is confirmed by the results

of the body shape analysis shown in Table 1, where the 95%
ranges of a values are far apart between eel-like and short &
deep body shapes, but the 95% b ranges are nearly identical.

A hierarchical model was used that estimates mean and
between-species variability in log10(a) and b for each body-
shape. The model then estimates log10(a) and b for each spe-

cies with the respective body shape, while shrinking estimates
for poorly-estimated species towards their body-shape mean
(Gelman and Hill, 2007). Essentially, the model uses multiple
observations within each species to estimate the ‘measure-

ment errors’ for the average LWR study. Variability between
species in excess of these ‘measurement errors’ is then
attributed to a ‘process error’ that arises due to natural

between-species variability in log10(a) and b (Clark, 2003).
Additionally, systematic differences in log10(a) and b between
body shapes were ultimately attributed to effects stemming

from different body plans.
Figure 1 shows histograms of parameters a and b across

all studies. The overlaid bold normal probability density

curves use mean and standard deviation of the data and con-
firm that log10(a) and b are approximately normally distrib-
uted. Figure 1 also shows nicely the updating of prior beliefs
from the initial broad estimates derived from textbooks

(dashed curve), to the observed variability in 5150 data sets
(bold curve), to the predictive distribution (dotted curve)
that excludes measurement errors. The narrower posterior
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Fig. 1. Weighted distribution of parameters b and a in 5150 LWR studies for 1821 species of fishes. Overlaid curves are normal density func-
tions, i.e. areas under the histograms and under the curves are identical and equal to 1. Bold normal curves use mean and standard deviation
of the data. They confirm that b and log10(a) are approximately normally distributed. Dashed curves represent overall priors derived from
the literature. Dotted curves represent predictive posterior distributions, which are narrower because they include only the errors in parameter
estimation and between-species variability, excluding measurement errors



distribution especially for parameter b confirms observations
by Carlander (1977) and Froese (2006) that strong deviations
from b = 3.0 often stem from questionable studies with
few specimens, narrow length ranges, or low explained

variability.
Table 1 shows weighted means and standard deviations by

body-shape group for the LWR studies compiled in Fish-

Base 12/2012. For all body-shape groups, mean b values
were close to 3, confirming that most fish do not change
their body shape as adults (Froese, 2006). However, geomet-

ric mean a values clearly differed between body-shape
groups, from a = 0.001 in eel-like fishes to a = 0.02 in short
& deep fishes, confirming the pattern proposed by Froese

(2006). Table 3 gives the measurement and process errors,
respectively.
For the estimation of parameter distributions by species

the weighted means and standard deviations of the respective

body-shape group were used as priors. We assumed that dif-
ferences in parameter estimates between different studies for
a given species were mostly caused by different sample size

structure or season rather than by different localities (Froese,
2006). Therefore all populations of a species were treated as
being of the same hierarchical level with respect to LWR.

This approach was applied to 48 weighted LWR studies of
the European anchovy Engraulis encrasicolus. The resulting
joint parameters had reasonably narrow distributions as
shown in Fig. 2, with means (peak of continuous curve) that

did not deviate significantly from the means of the data
(indicated by the single points).
Note that the posterior standard deviation of log10(a) is

also the standard error of body weight predicted from length.
For example, using the parameters estimated for European
anchovy in Fig. 2, the mean weight predicted for 12 cm total

length is given by

Wmean ¼ 10�2:26þ3:04log10ð12Þ ¼ 10:5

and the range that is likely to contain 95% of the variability
in weight is given by

Wrange ¼ 10ð�2:26þ3:04log10ð12Þ�1:96�0:0399Þ ¼ 8:8� 12:6

For the estimation of parameter distributions by species
and related species (congeners or Family members with the
same body-shape), multivariate hierarchical Bayesian infer-
ence was applied, treating each species as its own hierarchical

level. In other words, hierarchical levels were not used for
Genus- or Family-groups, because we considered the devia-
tion of the body shape of a species from the mean shape of

its Genus or Family-group not as an error but as a true
manifestation of differences between species. Again, a corre-
lation was assumed between parameters a and b within spe-

cies, but these parameters were treated as independent when
summarizing across species.
An example of a species with a single LWR study in Fish-

Base was the Pacific short-finned eel, Anguilla obscura

(Fig. 3). The parameters given were n = 145, a = 0.00021,
b = 3.38, r2 = 0.99 (Jellyman, 1991), which represent a con-
siderable deviation from the body shape means for eel-like

fishes of a = 0.001 and b = 3.06 (Table 4), probably as a case
of negative parameter co-variation, i.e., the a estimate
appears too low and b too high. In this case, single-species

analysis would combine the only study with the information
provided by the prior for eel-like species, suggesting
a = 0.00067 and b = 3.09, and thus pulling the parameters

suggested by the single study strongly in the direction of the
prior. However, other LWR studies for species of the Genus
Anguilla confirm a deviation from the eel-like prior, although
less strongly than suggested by the single study. Including

the information from these related species gives a = 0.00085
(0.00058–0.0013) and b = 3.17 (3.07–3.26), which appears to
be a meaningful summary of the available information,

accommodating the single study under the tails of the pro-
posed parameter distributions (see single points in Fig. 3).
Finally, we wanted to inform a new analysis of weight-at-

length data with parameter estimates from existing studies. If
no previous study existed for the target species, then the
body shape priors in Tables 1 and 3 would represent the
existing knowledge. Otherwise, a parameter analysis as

described above was first conducted on the existing studies
for the target species, including related species if necessary.
This analysis then provided the priors for the new study.
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Fig. 2. Distribution of parameters a
and b for 48 LWR studies of
European anchovy Engraulis encrasic-
olus. Single points represent mean
values of the data. Dashed lines
represent prior distributions for
elongated fishes. Mean log10(a) =
�2.26, SD of log10(a) and log10(W) =
0.0397, geometric mean a = 0.00554,
95% range a = 0.00464–0.00662, for
total length, and mean b = 3.04, SD
b = 0.0291, and 95% credible interval
b = 2.98–3.1. Measurement error ϭ of
log10(a) was mean = 0.255, SD =
0.00319, and of b was mean = 0.188,
SD = 0.00224

Table 3
Measurement and process errors derived from 5150 LWR studies for
1821 species. For convenience, parameters are also given as shape
and rate, ready for use with a gamma distribution

Type of error mean ϭ SD ϭ Shape Rate

Measurement error log10(a) 0.260 0.00322 25076 6520
Measurement error b 0.184 0.00223 37001 6808
Process error log10(a) 0.173 0.00467 7933 1372
Process error b 0.088 0.00368 6498 572
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For example, weight-at-length data for North Sea turbot
(Scophthalmus maximus) extracted in November 2012 from
the DATRAS database (http://datras.ices.dk) was used for
the years 2010–2012. A plot of log10(W) over log10(L)

showed one extreme outlier, which was removed. A parame-
ter analysis was run across the 10 existing studies for the spe-
cies and the resulting means and standard deviations for

log10(a), b, and measurement error of log10(a) were used as
priors for the new analysis. The results are presented in
Table 5, which can serve as a model for meaningful report-

ing of Bayesian LWR analyses in publications.
It is interesting to compare the results of the Bayesian

LWR analysis with those of a regular linear regression. In

the example for turbot, the Bayesian analysis included, in a
hierarchical process, information from the body-shape group
and from other studies done for the species. In contrast, the
regular regression analyzed only the data at hand. The prior

means for log10(a) = �1.83 and b = 3.04 did not differ much
from the means of the data, as provided by regular regres-
sion with log10(a) = �1.81, b = 3.06, and hence the means

provided by the Bayesian analysis were identical to those of

the regular regression. However, the prior estimates of uncer-
tainty SD[log10(a)] = 0.069 and SD[b] = 0.0486 were consid-
erably wider than those of the regular regression with SE
[log10(a)] = 0.0271 and SE[b] = 0.0187. In other words, the

estimates of uncertainty provided by the regular regression
were only representative for the analyzed data, but too nar-
row if data from other years and areas were considered. The

Bayesian analysis incorporated this additional information
and provided more realistic estimates of uncertainty that
were intermediate between the priors and the data, with SD

[log10(a)] = 0.0461 and SD[b] = 0.0317.

Preliminary LWR parameters for all species of fishes

FishBase 12/12 contained 32 470 species of fishes in 554
Families. However, LWR studies were only available for
3587 species in 357 Families. Based on the results of this

study, the FishBase team assigned preliminary LWR parame-
ters as follows:

1 For the over 2500 species in the 197 Families without

LWR studies, the respective body shape priors (step 3
above) were assigned. If no matching body shape infor-
mation was available, the overall priors (step 2 above)
were assigned.

2 For the over 26 000 species without specific LWR studies
but with studies for other species in their Families, the
respective body shape priors were treated as if they were

an existing study and the parameter analysis of step 5
above was run to update the body shape priors with
information from related species.

3 For the over 3500 species with existing LWR studies,
steps 4 or 5 above were used to estimate representative
parameters.

This approach assigned preliminary LWR parameters to
practically all species of fishes, summarizing the best avail-

able information. These parameters will be updated whenever
new studies are added to FishBase.

Table 4
Demonstration of how parameter estimates from a single LWR
study (Anguilla obscura), which deviated strongly from the means for
eel-like fishes, were made more realistic by inclusion of prior infor-
mation, first for eel-like fishes, and then for eel-like fishes and related
species in the Genus Anguilla. Relatively wide standard deviations
(also shown in Fig. 3) account for the remaining uncertainty in the
estimates

Data sources a log10(a) SD b SD

eel-like prior 0.00102 �2.99 0.175 3.06 0.0896
Single study 0.00021 �3.68 – 3.38 –
Study + prior 0.000665 �3.18 0.131 3.09 0.0785
33 Genus studies 0.000853 �3.07 0.086 3.17 0.0484
Study + prior + Genus 0.000519 �3.28 0.123 3.14 0.0790
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Fig. 3. Distribution of parameters a
and b for one study with a = 0.00021
and b = 3.38 for Pacific short-finned
eel, Anguilla obscura (indicated by
single points) and 33 LWR studies of
four species of the Genus Anguilla.
Dashed curves represent prior distri-
butions for eel-like fishes. Resulting
mean log10(a) = �3.28, SD of log10(a)
and log10(W) = 0.123, geometric
mean a = 0.000519, 95% range
a = 0.000293–0.000907, and mean
b = 3.14, SD b = 0.0790, and 95%
range b = 2.99–3.30. Measurement
error of log10(a) was mean = 0.264,
SD = 0.00324, and for b was
mean = 0.182, SD = 0.0225

Table 5
Analysis of weight-at-length data for North Sea turbot for years 2010 – 2012. Priors were derived from parameter analysis of existing studies
in FishBase 12/2012. Total lengths in cm and whole body weight in g

Species n Length (cm) Weight (g) log10(a) SD a 95% range b SD 95% range r2

Scophthalmus maximus 742 9–52 15–3252 �1.81 0.0467 0.0155 0.0126–0.0192 3.06 0.0322 2.99–3.12 0.972



Conclusion

This study presents an example of a self-learning online
database, where the addition of new studies improves the
species-specific parameter estimates, and where these param-
eter estimates inform the analysis of new data. We used a

Bayesian approach to the estimation of length-weight rela-
tionships for practically all species of fishes. This shows how
the use of all available prior information can improve

parameter estimates. The increased uncertainty in species
with little available data is expressed in wider respective
parameter distributions. A large standardized data set is

made available for further research. It is hoped that the
ready-to-use tools will help in spreading the application of
Bayesian methods in fisheries.
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Appendix: Web tools

The Bayesian approaches described in this study have been
implemented in web tools available from www.fishbase.org.
On a FishBase species summary page, go to the ‘More infor-

mation’ section and select the link ‘Length-weight’. This opens
a new page with a table of available LWR studies, and a plot
of log10(a) over b values, which should typically cluster around
a line with a negative slope. This graph is meant to help identi-

fication of studies that deviate from the others, often because
they used a different type of length measurement. The default
scores used for weighting are shown for each study and can be

modified by the user. The available studies can then be ana-
lyzed, with inclusion of other species from the same Genus or
Family in cases where, e.g. fewer than 5 studies are available

for the target species. The respective priors shown in Tables 1
and 3 are used automatically by the web tools.
A successful analysis will present the parameter estimates

as well as the measurement error, together with standard

deviations and 95% ranges. There is also an option to ana-
lyze new weight-at-length data, using the results from the
available studies as priors. Alternatively, users can download

data and R-code and perform the analyses locally. The anal-
yses described above can also be done by life stage or sex or
for a certain region, simply by only including the respective

studies in the parameter analysis.
The preliminary LWR parameter estimates assigned to all

species in FishBase are available at the bottom of the Fish-

Base species summary page, in the section entitled: Estima-
tion of some characteristics with mathematical models.
The R-code and the data used in the Figures and Tables

can be downloaded as indicated in Table 2.
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