Appendix 3

Detailed stock assessment reports of wide ranging species

ICCAT Stocks (analyzed with CMSY_O_7m.R)
Species: Prionace glauca , stock: BSH_ATN
Blueshark - North Atlantic
Source: https://www.iccat.int/Documents/Meetings/Docs/2015_BSH\ ASSESS_REPORT_ENG.pdf
Region: North East Atlantic , Wide ranging
Catch data used from years 1971-2014 , abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 1990 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.05-0.5$ default , prior range for $k=100-4009$
Prior range of $q=2.01 e-06-1.27 e-05$

Results of CMSY analysis with altogether 5126 viable trajectories for 1118 r -k pairs
$r=0.282,95 \% \mathrm{CL}=0.163-0.487, \mathrm{k}=441,95 \% \mathrm{CL}=234-832$
MSY = 31.2,95\% CL = 26.2-37
Relative biomass last year $=0.471 \mathrm{k}, 2.5 \mathrm{th}=0.223,97.5 \mathrm{th}=0.595$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=1.25$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.191,95 \% \mathrm{CL}=0.113-0.322, \mathrm{k}=629,95 \% \mathrm{CL}=413-959$
MSY = 30, 95\% CL = 24.7-36.6
Relative biomass in last year $=0.551 \mathrm{k}$, 2.5th perc $=0.435,97.5$ th perc $=0.654$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.1$
$\mathrm{q}=2.41 \mathrm{e}-06, \mathrm{lcl}=1.71 \mathrm{e}-06, \mathrm{ucl}=3.4 \mathrm{e}-06$

Results for Management (based on BSM analysis)
Fmsy $=0.0955,95 \%$ CL $=0.0566-0.161$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5$ r)
Fmsy $=0.0955,95 \% C L=0.0566-0.161$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=30,95 \%$ CL $=24.7-36.6$
Bmsy $=315$, 95\% CL = 206-480
Biomass in last year $=347,2.5$ th perc $=274,97.5$ perc $=412$
$\mathrm{B} /$ Bmsy in last year $=1.1,2.5$ th perc $=0.87,97.5$ perc $=1.31$
Fishing mortality in last year $=0.105,2.5$ th perc $=0.0887,97.5$ perc $=0.133$
F/Fmsy $=1.1,2.5$ th perc $=0.929,97.5$ perc $=1.4$

Stock status and exploitation in 2014
Biomass $=347, \mathrm{~B} /$ Bmsy $=1.1$, fishing mortality F $=0.105, \mathrm{~F} / \mathrm{Fmsy}=1.1$
Comment: Reconstructed catch from BSH assessment (raw CPUE and Catch data from 2015 ICCAT assessment); Multiple CPUE series combined.

C: Analysis of viable r-k

Catch BSH_ATN

Exploitation

E: Exploitation rate

Species: Lamna nasus, stock: POR_NEA
Porbeagle - North East Atlantic
Source: https://www.iccat.int/Documents/SCRS/DetRep/DET-POR.pdf ;
https://www.iccat.int/en/accesingdb.HTM
Region: North East Atlantic , Wide ranging
Catch data used from years 1925-2014 , abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass $=0.01-0.4$ in year 1985 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.015-0.1$ default, prior range for $k=31.7-845$
Prior range of $q=1.33 e-05-6.86 e-05$

Results of CMSY analysis with altogether 4920 viable trajectories for 1488 r-k pairs
$r=0.0611,95 \% C L=0.0385-0.097, k=61.5,95 \% C L=34.6-109$
MSY $=0.939,95 \% C L=0.724-1.22$
Relative biomass last year $=0.229 \mathrm{k}, 2.5 \mathrm{th}=0.0191,97.5 \mathrm{th}=0.397$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.158$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.0296,95 \% C L=0.0136-0.0642, k=96.1,95 \% C L=60.9-152$
MSY $=0.711,95 \% C L=0.372-1.36$
Relative biomass in last year $=0.0317 \mathrm{k}, 2.5$ th perc $=0.0124,97.5$ th perc $=0.123$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.406$
$\mathrm{q}=2.31 \mathrm{e}-05, \mathrm{lcl}=1.64 \mathrm{e}-05, \mathrm{ucl}=3.27 \mathrm{e}-05$

Results for Management (based on BSM analysis)
Fmsy $=0.0148,95 \% C L=0.00681-0.0321$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.00188,95 \% C L=0.000865-0.00407$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=0.711,95 \% C L=0.372-1.36$
Bmsy $=48.1,95 \%$ CL $=30.5-75.9$
Biomass in last year $=3.05,2.5$ th perc $=1.19,97.5$ perc $=11.8$
$B /$ Bmsy in last year $=0.0635,2.5$ th perc $=0.0247,97.5$ perc $=0.246$
Fishing mortality in last year $=0.006,2.5$ th perc $=0.00155,97.5$ perc $=0.0154$
F/Fmsy $=3.2,2.5$ th perc $=0.824,97.5$ perc $=8.21$

Stock status and exploitation in 2014
Biomass $=3.05, \mathrm{~B} / \mathrm{Bmsy}=0.0635$, fishing mortality $\mathrm{F}=0.006, \mathrm{~F} / \mathrm{Fmsy}=3.2$
Comment: Catch and cpue from ICCAT POR assessment + recent catch from Task I database. Results plausible; Multiple CPUE series combined.

Species: Isurus oxyrinchus, stock: SMA_ATN
Shortfin mako shark - North Atlantic
Source: https://www.iccat.int/Documents/Meetings/Docs/2012_SHK_ASS_ENG.pdf ;
https://www.iccat.int/en/accesingdb.HTM
Region: North East Atlantic , Wide ranging
Catch data used from years 1971-2014 , abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass $=0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.015-0.1$ default , prior range for $k=66.1-1762$
Prior range of $q=3.64 \mathrm{e}-06-1.88 \mathrm{e}-05$

Results of CMSY analysis with altogether 4170 viable trajectories for $1996 \mathrm{r}-\mathrm{k}$ pairs
$r=0.062,95 \% \mathrm{CL}=0.0397-0.097, \mathrm{k}=172,95 \% \mathrm{CL}=91.7-322$
$\mathrm{MSY}=2.66,95 \% \mathrm{CL}=1.87-3.81$
Relative biomass last year $=0.253 \mathrm{k}, 2.5$ th $=0.203,97.5$ th $=0.36$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.72$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.0447,95 \% \mathrm{CL}=0.0224-0.0891, \mathrm{k}=237,95 \% \mathrm{CL}=168-333$
$\mathrm{MSY}=2.65,95 \% \mathrm{CL}=1.47-4.77$
Relative biomass in last year $=0.394 k$, 2.5th perc $=0.26,97.5$ th perc $=0.561$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.39$
$\mathrm{q}=7.05 \mathrm{e}-06, \mathrm{lcl}=5.1 \mathrm{e}-06, \mathrm{ucl}=9.76 \mathrm{e}-06$

Results for Management (based on BSM analysis)
Fmsy $=0.0224,95 \% C L=0.0112-0.0445$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0224,95 \% C L=0.0112-0.0445$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=2.65,95 \%$ CL $=1.47-4.77$
Bmsy $=118$, 95\% CL $=84.2-167$
Biomass in last year $=93.4,2.5$ th perc $=61.5,97.5$ perc $=133$
$B /$ Bmsy in last year $=0.788,2.5$ th perc $=0.52,97.5$ perc $=1.12$
Fishing mortality in last year $=0.031,2.5$ th perc $=0.0218,97.5$ perc $=0.0471$
F/Fmsy $=1.39,2.5$ th perc $=0.976,97.5$ perc $=2.11$

Stock status and exploitation in 2014
Biomass $=93.4, \mathrm{~B} / \mathrm{Bmsy}=0.788$, fishing mortality $\mathrm{F}=0.031, \mathrm{~F} / \mathrm{Fmsy}=1.39$
Comment: Catch and CPUE from 2011 SMA ICCAT assessment + recent catch supplemented from Task I database. Multiple CPUE series combined. Results are coherent with Baum et al (2003)

Exploitation

B : Finding viable $r-k$

E: Exploitation rate

Year

D: Biomass

Species: Thunnus thynnus, stock: BFT_ATE
Bluefin tuna - East Atlantic
Source: https://www.iccat.int/Documents/Meetings/Docs/2014_BFT_ASSESS-ENG.pdf ;
https://www.iccat.int/en/accesingdb.HTM
Region: North East Atlantic , Wide ranging
Catch data used from years 1950-2014 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass $=0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=61.9-991$
Prior range of $q=1.78 e-05-7.14 e-05$

Results of CMSY analysis with altogether 1696 viable trajectories for 1116 r-k pairs
$r=0.568,95 \% C L=0.411-0.785, k=234,95 \% C L=161-340$
MSY = 33.3, 95\% CL = 30.1-36.7
Relative biomass last year $=0.496 \mathrm{k}, 2.5 \mathrm{th}=0.225,97.5 \mathrm{th}=0.596$
Exploitation $F /(r / 2)$ in last year $=0.378$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.638,95 \% C L=0.469-0.868, k=254,95 \% C L=178-362$
MSY $=40.5$, $95 \% \mathrm{CL}=31.6-51.8$
Relative biomass in last year $=0.631 \mathrm{k}, 2.5$ th perc $=0.457,97.5$ th perc $=0.766$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.259$
$\mathrm{q}=1.49 \mathrm{e}-05, \mathrm{lcl}=1.19 \mathrm{e}-05, \mathrm{ucl}=1.87 \mathrm{e}-05$

Results for Management (based on BSM analysis)
Fmsy $=0.319$, $95 \% \mathrm{CL}=0.235-0.434$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.319,95 \% C L=0.235-0.434$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=40.5$, $95 \% \mathrm{CL}=31.6-51.8$
Bmsy = 127, 95\% CL = 88.9-181
Biomass in last year $=160,2.5$ th perc $=116,97.5$ perc $=194$
B/Bmsy in last year $=1.26,2.5$ th perc $=0.915,97.5$ perc $=1.53$
Fishing mortality in last year $=0.0828,2.5$ th perc $=0.0682,97.5$ perc $=0.114$
F/Fmsy $=0.259,2.5$ th perc $=0.214,97.5$ perc $=0.358$

Stock status and exploitation in 2014
Biomass $=160, \mathrm{~B} / \mathrm{Bmsy}=1.26$, fishing mortality $\mathrm{F}=0.0828, \mathrm{~F} / \mathrm{Fmsy}=0.259$
Comment: Catch and CPUE from recent BFT ICCAT assessment, recent catch supplemented from ICAAT
Task I data; Multiple CPUE series combined. BSM r appears outside plausible biological limits, likely driven by overoptimistic CPUE increase in recent years

D: Biomass

E: Exploitation rate

Year

F: Equilibrium curve

Species: Xiphias gladius, stock: SWO_MED
Swordfish - Mediterranean Sea
Source: https://www.iccat.int/Documents/Meetings/Docs/2014_SWO_MED_ASSESS_rep_ENG.pdf ; https://www.iccat.int/en/accesingdb.HTM
Region: Mediterranean , Wide ranging
Catch data used from years 1985-2014 , abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass $=0.01-0.3$ in year 1995 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.23-0.77$ expert, , prior range for $k=24.4-327$
Prior range of $q=0.000936-0.00343$

Results of CMSY analysis with altogether 1409 viable trajectories for 1260 r - k pairs
$r=0.478,95 \% C L=0.315-0.725, k=147,95 \% C L=108-202$
MSY = 17.6, 95\% CL = 15-20.8
Relative biomass last year $=0.306 \mathrm{k}, 2.5 \mathrm{th}=0.0213,97.5$ th $=0.396$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.922$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.554,95 \% \mathrm{CL}=0.435-0.705, \mathrm{k}=118,95 \% \mathrm{CL}=90.2-153$
MSY $=16.3,95 \%$ CL $=14.8-17.9$
Relative biomass in last year $=0.38 \mathrm{k}, 2.5$ th perc $=0.312,97.5$ th perc $=0.441$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.792$
$q=0.00121, \mathrm{cl}=0.000964$, ucl $=0.00151$

Results for Management (based on BSM analysis)
Fmsy $=0.277,95 \% \mathrm{CL}=0.218-0.352$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.277,95 \% C L=0.218-0.352$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=16.3,95 \%$ CL $=14.8-17.9$
Bmsy $=58.8$, 95\% CL $=45.1$ - 76.6
Biomass in last year $=44.6,2.5$ th perc $=36.7,97.5$ perc $=51.8$
$B /$ Bmsy in last year $=0.759,2.5$ th perc $=0.625,97.5$ perc $=0.882$
Fishing mortality in last year $=0.219,2.5$ th perc $=0.189,97.5$ perc $=0.267$
F/Fmsy $=0.792,2.5$ th perc $=0.682,97.5$ perc $=0.963$

Stock status and exploitation in 2014
Biomass $=44.6, \mathrm{~B} / \mathrm{Bmsy}=0.759$, fishing mortality $\mathrm{F}=0.219, \mathrm{~F} / \mathrm{Fmsy}=0.792$
Comment: Catch and CPUE series from recent ICCAT assessment, recent catch supplemented from ICAAT Task I data.

C: Analysis of viable r-k

D: Biomass

Catch SWO_MED

Exploitation

E: Exploitation rate

Year

F: Equilibrium curve

Species: Xiphias gladius , stock: SWO_ATN
Swordfish - North Atlantic
Source: https://www.iccat.int/Documents/Meetings/Docs/2013_SWO_ASSESS_REP_ENG.pdf ;
https://www.iccat.int/en/accesingdb.HTM
Region: North East Atlantic , Wide ranging
Catch data used from years 1950-2014, abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 1995 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.23-0.77$ expert, , prior range for $k=25.2-338$
Prior range of $q=1.5 \mathrm{e}-05-5.49 \mathrm{e}-05$

Results of CMSY analysis with altogether 1611 viable trajectories for 735 r -k pairs
$r=0.574,95 \%$ CL $=0.436-0.756, k=98.9,95 \% \mathrm{CL}=72.1-136$
MSY = 14.2, 95\% CL = 13.1-15.4
Relative biomass last year $=0.492 k, 2.5$ th $=0.233,97.5$ th $=0.596$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.877$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.671,95 \% \mathrm{CL}=0.53-0.85, \mathrm{k}=85.1,95 \% \mathrm{CL}=69-105$
MSY = 14.3, 95\% CL = 13.3-15.3
Relative biomass in last year $=0.609 \mathrm{k}, 2.5$ th perc $=0.463,97.5$ th $\operatorname{perc}=0.707$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.622$
$\mathrm{q}=1.9 \mathrm{e}-05, \mathrm{lcl}=1.53 \mathrm{e}-05, \mathrm{ucl}=2.35 \mathrm{e}-05$

Results for Management (based on BSM analysis)
Fmsy $=0.336,95 \% C L=0.265-0.425$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.336,95 \% C L=0.265-0.425$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 14.3, 95\% CL = 13.3-15.3
Bmsy $=42.5$, 95\% CL $=34.5-52.5$
Biomass in last year $=51.8,2.5$ th perc $=39.4,97.5$ perc $=60.2$
$B /$ Bmsy in last year $=1.22,2.5$ th perc $=0.926,97.5$ perc $=1.41$
Fishing mortality in last year $=0.209,2.5$ th perc $=0.18,97.5$ perc $=0.274$
F/Fmsy $=0.622,2.5$ th perc $=0.536,97.5$ perc $=0.818$

Stock status and exploitation in 2014
Biomass $=51.8, \mathrm{~B} / \mathrm{Bmsy}=1.22$, fishing mortality $\mathrm{F}=0.209, \mathrm{~F} / \mathrm{Fmsy}=0.622$
Comment: Catch and readily averaged CPUE from ICCAT SWO assessment, most recent catch from Task I database.

Species: Thunnus alalunga, stock: ALB_ATN
Albacore tuna - North Atlantic
Source: https://www.iccat.int/Documents/Meetings/Docs/2013_ALB_ASSESS_REP_ENG.pdf ; https://www.iccat.int/en/accesingdb.HTM
Region: North East Atlantic, Wide ranging
Catch data used from years 1950-2014 , abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 1995 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.2-0.8$ default, prior range for $k=77.3-1238$
Prior range of $q=3.49 \mathrm{e}-05-0.00014$

Results of CMSY analysis with altogether 1801 viable trajectories for 983 r-k pairs
$r=0.333,95 \% C L=0.27-0.41, k=524,95 \% C L=431-636$
MSY = 43.6, 95\% CL = 41.3-46.1
Relative biomass last year $=0.543 \mathrm{k}, 2.5 \mathrm{th}=0.346,97.5 \mathrm{th}=0.598$
Exploitation $F /(r / 2)$ in last year $=0.541$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.761,95 \% C L=0.616-0.94, k=248,95 \% C L=202-305$
MSY = 47.2, 95\% CL = 43.9-50.8
Relative biomass in last year $=0.682 \mathrm{k}, 2.5$ th perc $=0.618,97.5$ th perc $=0.751$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.412$
$\mathrm{q}=2.82 \mathrm{e}-05, \mathrm{lcl}=2.31 \mathrm{e}-05, \mathrm{ucl}=3.45 \mathrm{e}-05$

Results for Management (based on BSM analysis)
Fmsy $=0.38,95 \% C L=0.308-0.47$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.38,95 \% C L=0.308-0.47$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=47.2$, $95 \% \mathrm{CL}=43.9-50.8$
Bmsy $=124$, 95\% CL = 101-153
Biomass in last year $=169,2.5$ th perc $=153,97.5$ perc $=186$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=1.36,2.5$ th perc $=1.24,97.5$ perc $=1.5$
Fishing mortality in last year $=0.157,2.5$ th perc $=0.142,97.5$ perc $=0.173$
F/Fmsy $=0.412,2.5$ th perc $=0.374,97.5$ perc $=0.455$

Stock status and exploitation in 2014
Biomass $=169$, $\mathrm{B} / \mathrm{Bmsy}=1.36$, fishing mortality $\mathrm{F}=0.157, \mathrm{~F} / \mathrm{Fmsy}=0.412$
Comment: from ALB assessment + catches from ICCAT Task I and 2 nominal time series (TAI,JAP LL) extracted from Task II as used in ICCAT assessment

D: Biomass

Catch ALB_ATN

E: Exploitation rate

F: Equilibrium curve

Species: Thunnus alalunga, stock: ALB_MED
Albacore tuna - Mediterranean Sea
Source: https://www.iccat.int/Documents/Meetings/Docs/2011_ALB_ASSESS_EN.pdf ;
https://www.iccat.int/en/accesingdb.HTM
Region: Mediterranean , Wide ranging
Catch data used from years 1985-2014 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 2006 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.2-0.8$ default, prior range for $k=7.66-123$
Prior range of $q=0.0116-0.0464$

Results of CMSY analysis with altogether 2926 viable trajectories for 2017 r-k pairs
$r=0.567,95 \% C L=0.409-0.785, k=30.8,95 \% C L=20-47.5$
MSY = 4.37, 95\% CL = 3.62-5.28
Relative biomass last year $=0.348 \mathrm{k}, 2.5 \mathrm{th}=0.211,97.5 \mathrm{th}=0.572$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.649$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.747,95 \% C L=0.53-1.05, k=26.3,95 \% C L=19-36.3$
MSY $=4.91,95 \%$ CL $=3.99-6.05$
Relative biomass in last year $=0.585 \mathrm{k}, 2.5$ th perc $=0.339,97.5$ th perc $=0.734$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.413$
$\mathrm{q}=0.0111, \mathrm{lcl}=0.00907, \mathrm{ucl}=0.0136$

Results for Management (based on BSM analysis)
Fmsy $=0.374,95 \% C L=0.265-0.526$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.374,95 \% C L=0.265-0.526$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=4.91,95 \% C L=3.99-6.05$
Bmsy $=13.1$, 95\% CL $=9.52-18.1$
Biomass in last year $=15.4,2.5$ th perc $=8.91,97.5$ perc $=19.3$
$B / B m s y$ in last year $=1.17,2.5$ th perc $=0.678,97.5$ perc $=1.47$
Fishing mortality in last year $=0.154,2.5$ th perc $=0.123,97.5$ perc $=0.267$
F/Fmsy $=0.413,2.5$ th perc $=0.329,97.5$ perc $=0.714$

Stock status and exploitation in 2014
Biomass $=15.4, \mathrm{~B} / \mathrm{Bmsy}=1.17$, fishing mortality $\mathrm{F}=0.154, \mathrm{~F} / \mathrm{Fmsy}=0.413$
Comment: CPUE from ALB assessment + Catch from ICCAT Task I (ICCAT BSM unrealistic around k) CMYBSM plausible and fairly insensitive to low or medium biomass priors (Catch data associated with high uncertainty, CPUE quality is poor) Multiple CPUE series combined.

C: Analysis of viable r-k

D: Biomass

E: Exploitation rate

Year

Species: Euthynnus alletteratus, stock: LTA_MED
Little Thunny - Mediterranean Sea
Source: https://www.iccat.int/Documents/SCRS/ExecSum/SMT_EN.pdf;
https://www.iccat.int/en/accesingdb.HTM
Region: Mediterranean , Wide ranging
Catch data used from years 1980-2014, abundance $=$ None
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass=0.2-0.6 in year 1990 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.36$ - 1.1 expert, , prior range for $k=3.78-46.2$

Results of CMSY analysis with altogether 2393 viable trajectories for 798 r-k pairs
$r=0.833,95 \% C L=0.64-1.08, k=11,95 \% C L=7.87-15.4$
MSY = 2.29, 95\% CL = 1.99-2.63
Relative biomass last year $=0.304 \mathrm{k}, 2.5 \mathrm{th}=0.0637,97.5 \mathrm{th}=0.394$
Exploitation $F /(r / 2)$ in last year $=2.94$

Results for Management (based on CMSY analysis)
Fmsy $=0.417,95 \% C L=0.32-0.542$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.417,95 \% C L=0.32-0.542$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=2.29,95 \% C L=1.99-2.63$
Bmsy $=5.5$, 95\% CL $=3.93-7.68$
Biomass in last year $=3.34,2.5$ th perc $=0.7,97.5$ perc $=4.33$
B/Bmsy in last year $=0.608,2.5$ th perc $=0.127,97.5$ perc $=0.788$
Fishing mortality in last year $=1.03,2.5$ th perc $=0.795,97.5$ perc $=4.92$
F/Fmsy $=2.47,2.5$ th perc $=1.91,97.5$ perc $=11.8$

Stock status and exploitation in 2014
Biomass $=3.34$, $\mathrm{B} / \mathrm{Bmsy}=0.608$, fishing mortality $\mathrm{F}=1.03$, F/Fmsy $=2.47$
Comment: Catch data from Task I ICCAT. Data highly unreliable, likely strong underreporting, large quantity of small scale catch not reported. CMSY results appear plausible.

D: Biomass

Year

E: Exploitation rate

Year

F: Equilibrium curve

Catch LTA_MED

Exploitation

Species: Sarda sarda , stock: BON_MED
Bonito - Mediterranean Sea
Source: https://www.iccat.int/Documents/SCRS/ExecSum/SMT_EN.pdf;
https://www.iccat.int/en/accesingdb.HTM
Region: Mediterranean , Wide ranging
Catch data used from years 1960-2014 , abundance $=$ None
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 1990 expert
Prior final relative biomass $=0.2-0.6$, default
Prior range for $\mathrm{r}=0.2$ - 0.8 default , prior range for $\mathrm{k}=51.3$ - 821
Results of CMSY analysis with altogether 1944 viable trajectories for 1696 r -k pairs
$r=0.411,95 \% C L=0.284-0.593, k=230,95 \% C L=173-306$
MSY = 23.6, 95\% CL = 21.1-26.5
Relative biomass last year $=0.476 \mathrm{k}, 2.5 \mathrm{th}=0.234,97.5 \mathrm{th}=0.594$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.19$

Results for Management (based on CMSY analysis)
Fmsy $=0.205,95 \% \mathrm{CL}=0.142-0.297$ (if B > 1/2 Bmsy then Fmsy $=0.5$ r)
Fmsy $=0.205,95 \% C L=0.142-0.297$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=23.6,95 \% \mathrm{CL}=21.1-26.5$
Bmsy $=115$, 95\% CL = 86.4-153
Biomass in last year $=110,2.5$ th perc $=53.7,97.5$ perc $=137$
$\mathrm{B} /$ Bmsy in last year $=0.953,2.5$ th perc $=0.467,97.5$ perc $=1.19$
Fishing mortality in last year $=0.208,2.5$ th perc $=0.167,97.5$ perc $=0.425$
F/Fmsy $=1.01,2.5$ th perc $=0.813,97.5$ perc $=2.07$

Stock status and exploitation in 2014
Biomass $=110, \mathrm{~B} /$ Bmsy $=0.953$, fishing mortality $\mathrm{F}=0.208$, $\mathrm{F} / \mathrm{Fmsy}=1.01$
Comment: Catch dat from Task I ICCAT. Data unreliable, likely strong underreporting, large quantity of small scale catch not reported. CMSY results appear plausible.

D: Biomass

ICES Stocks (analyzed with CMSY_O_7l.R)
Species: Squatina squatina, stock: agn-nea
Angel shark in the Northeast Atlantic
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/agn-nea.pdf
Region: Northeast Atlantic , Wide ranging
Catch data used from years 1975-2011, abundance $=$ None
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass=0.01-0.3 in year 1992 expert
Prior final relative biomass $=0.01-0.1$ expert
Prior range for $r=0.05-0.5$ default , prior range for $k=0.064-2.56$

Results of CMSY analysis with altogether 3448 viable trajectories for 3376 r-k pairs
$r=0.278,95 \% C L=0.162-0.478, k=0.987,95 \% C L=0.286-3.41$
MSY $=0.0686$, 95% CL $=0.0175-0.269$
Relative biomass last year $=0.0357 \mathrm{k}, 2.5 \mathrm{th}=0.0111$, 97.5 th $=0.0942$
Exploitation $F /(r / 2)$ in last year $=0.34$

Results for Management (based on CMSY analysis)
Fmsy $=0.139$, 95\% CL $=0.0809-0.239$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.0199,95 \% C L=0.0116-0.0341$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=0.0686,95 \% C L=0.0175-0.269$
Bmsy $=0.494,95 \% C L=0.143-1.7$
Biomass in last year $=0.0353$, 2.5th perc $=0.0109,97.5$ perc $=0.093$
$B / B m s y$ in last year $=0.0714$, 2.5th perc $=0.0222,97.5$ perc $=0.188$
Fishing mortality in last year $=0.0284,2.5$ th perc $=0.0108,97.5$ perc $=0.0914$
F/Fmsy $=1.43,2.5$ th perc $=0.541,97.5$ perc $=4.6$

Stock status and exploitation in 2014
Biomass = , B/Bmsy = , fishing mortality F = , F/Fmsy = Comment: OK (RF 11.05.2016)

Year

B: Finding viable r-k

r

C: Analysis of viable r-k

F: Equilibrium curve

Relative biomass B / k
r

Catch agn-nea

E: Exploitation rate

Year

Biomass

Species: Argentina silus , stock: arg-123a4
Greater silver smelt in Subareas I, II, IV, and Division IIIa (Northeast Arctic, North Sea, Skagerrak and Kattegat)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/arg-123a4.pdf Region: Northeast Atlantic, Wide ranging
Catch data used from years 1988-2014 , abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.01-0.3 in year 2008 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.12-0.68$ expert, , prior range for $k=29.8-643$
Prior range of $q=0.00028-0.0013$
Results of CMSY analysis with altogether 171 viable trajectories for $171 \mathrm{r}-\mathrm{k}$ pairs
$r=0.571,95 \% \mathrm{CL}=0.486-0.671, \mathrm{k}=91.9,95 \% \mathrm{CL}=72.2-117$
MSY = 13.1, 95\% CL = 11.2-15.4
Relative biomass last year $=0.27 \mathrm{k}, 2.5$ th $=0.205,97.5 \mathrm{th}=0.474$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.92$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.503,95 \% \mathrm{CL}=0.252-1$, $\mathrm{k}=103,95 \% \mathrm{CL}=60.9-175$
MSY = 13, 95\% CL = 10.2-16.4
Relative biomass in last year $=0.271 \mathrm{k}, 2.5$ th perc $=0.177,97.5$ th perc $=0.56$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.14$
$q=0.000404, \mathrm{cc\mid}=0.000288, \mathrm{ucl}=0.000567$
Results for Management (based on BSM analysis)
Fmsy $=0.251,95 \% \mathrm{CL}=0.126-0.502$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.251,95 \% \mathrm{CL}=0.126-0.502$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 13, 95\% CL = 10.2-16.4
Bmsy $=51.6,95 \%$ CL $=30.4-87.4$
Biomass in last year $=28,2.5$ th perc $=18.2,97.5$ perc $=57.8$
$\mathrm{B} /$ Bmsy in last year $=0.542,2.5$ th perc $=0.354,97.5$ perc $=1.12$
Fishing mortality in last year $=0.538,2.5$ th perc $=0.261,97.5$ perc $=0.826$
F/Fmsy $=2.14,2.5$ th perc $=1.04,97.5$ perc $=3.28$
Stock status and exploitation in 2014
Biomass $=28, \mathrm{~B} / \mathrm{Bmsy}=0.542$, fishing mortality $\mathrm{F}=0.538, \mathrm{~F} / \mathrm{Fmsy}=2.14$
Comment: OK (RF(13.05.16) No ICES update in 2016.

D: Biomass

F: Equilibrium curve

Species: Argentina silus, stock: arg-rest
Greater silver smelt in Subareas VII-X, XII, and Division VIb (other areas)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/arg-rest.pdf
Region: Northeast Atlantic , Wide ranging
Catch data used from years 2000-2014 , abundance $=$ CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= $0.01-0.3$ in year 2006 expert
Prior final relative biomass $=0.01-0.2$ expert
Prior range for $r=0.12-0.68$ expert, , prior range for $k=5.49-119$
Prior range of $q=0.0102-0.0476$

Results of CMSY analysis with altogether 4994 viable trajectories for 3852 r-k pairs
$r=0.445,95 \% C L=0.298-0.663, k=42.6,95 \% C L=16-113$
MSY $=4.74,95 \% \mathrm{CL}=1.52-14.8$
Relative biomass last year $=0.0632 \mathrm{k}, 2.5 \mathrm{th}=0.0116,97.5 \mathrm{th}=0.189$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.0211$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.225,95 \% C L=0.123-0.415, k=46.2,95 \% C L=26.9-79.3$
MSY = 2.61, 95\% CL = 1.08-6.28
Relative biomass in last year $=0.125 \mathrm{k}, 2.5$ th perc $=0.0617,97.5$ th perc $=0.207$
Exploitation $F /(r / 2)$ in last year $=0.00153$
$q=0.0188, \mathrm{lc\mid}=0.0139, \mathrm{ucl}=0.0255$

Results for Management (based on BSM analysis)
Fmsy $=0.113,95 \% C L=0.0613-0.207$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0565,95 \% C L=0.0308-0.104$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=2.61,95 \% C L=1.08-6.28$
Bmsy $=23.1$, 95\% CL $=13.5-39.7$
Biomass in last year $=5.8,2.5$ th perc $=2.85,97.5$ perc $=9.56$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.251,2.5$ th perc $=0.123,97.5$ perc $=0.414$
Fishing mortality in last year $=0.000173,2.5$ th perc $=0.000105,97.5$ perc $=0.000351$
F/Fmsy $=0.00305,2.5$ th perc $=0.00185,97.5$ perc $=0.0062$

Stock status and exploitation in 2014
Biomass $=5.8, \mathrm{~B} / \mathrm{Bmsy}=0.251$, fishing mortality $\mathrm{F}=0.000173$, $\mathrm{F} / \mathrm{Fmsy}=0.00305$
Comment: OK (RF 09.06.16). Start year set to 2000. No ICES update in 2016.

D: Biomass

Year

Catch arg-rest

E: Exploitation rate

Year

F: Equilibrium curve

Species: Molva dypterygia , stock: bli-oth
Blue ling in Subareas I, II, VIII, IX, and XII, and Divisions IIIa and IVa (other areas)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/bli-oth.pdf
Region: Northeast Atlantic, Wide ranging
Catch data used from years 1988-2014 , abundance = None
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2004 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.19-0.48$ expert, , prior range for $k=1.72-17.1$
Results of CMSY analysis with altogether 7082 viable trajectories for 1169 r -k pairs
$r=0.386,95 \% \mathrm{CL}=0.311-0.479, \mathrm{k}=5.2,95 \% \mathrm{CL}=3.93-6.88$
$\mathrm{MSY}=0.502,95 \% \mathrm{CL}=0.443-0.568$
Relative biomass last year $=0.219 \mathrm{k}, 2.5 \mathrm{th}=0.0218,97.5 \mathrm{th}=0.385$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.27$

Results for Management (based on CMSY analysis)
Fmsy $=0.193,95 \% C L=0.155-0.239$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.169,95 \% C L=0.136-0.21$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 0.502, 95\% CL = 0.443-0.568
Bmsy $=2.6,95 \% \mathrm{CL}=1.97-3.44$
Biomass in last year $=1.14,2.5$ th perc $=0.113,97.5$ perc $=2$
$\mathrm{B} /$ Bmsy in last year $=0.438,2.5$ th perc $=0.0436,97.5$ perc $=0.769$
Fishing mortality in last year $=0.211,2.5$ th perc $=0.12,97.5$ perc $=2.12$
F/Fmsy $=1.25,2.5$ th perc $=0.711,97.5$ perc $=12.5$
Stock status and exploitation in 2014
Biomass $=1.14, \mathrm{~B} / \mathrm{Bmsy}=0.438$, fishing mortality $\mathrm{F}=0.211$, $\mathrm{F} / \mathrm{Fmsy}=1.25$
Comment: No update in 2016. OK (RF 16.05.16)

E: Exploitation rate

Exploitation

Species: Aphanopus carbo , stock: bsf-nea
Black scabbardfish in subareas 1, 2, 4, 6-8, 10, and 14, and in divisions 3.a, 5.a-b, 9.a, and 12.b (Northeast Atlantic)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/bsf-nea.pdf Region: Northeast Atlantic, Wide ranging
Catch data used from years 1990-2015, abundance $=$ CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.5-0.9 in year 2011 default
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.05-0.5$ default , prior range for $k=2.58-155$
Prior range of $q=0.0105-0.0664$

Results of CMSY analysis with altogether 29387 viable trajectories for 4031 r-k pairs
$r=0.278,95 \% C L=0.159-0.487, k=4.7,95 \% C L=2.17-10.2$
MSY $=0.326,95 \%$ CL $=0.207-0.515$
Relative biomass last year $=0.608 \mathrm{k}, 2.5 \mathrm{th}=0.504,97.5 \mathrm{th}=0.749$
Exploitation $F /(r / 2)$ in last year $=1.28$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.122,95 \% C L=0.0601-0.246, k=6.39,95 \% C L=4.3-9.5$
MSY = 0.194, 95\% CL = 0.102-0.369
Relative biomass in last year $=0.625 \mathrm{k}, 2.5$ th perc $=0.461,97.5$ th perc $=0.829$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.09$
$q=0.0183, \mathrm{lc\mid}=0.0126, u c \mid=0.0266$

Results for Management (based on BSM analysis)
Fmsy $=0.0608,95 \% C L=0.0301-0.123$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0608,95 \% C L=0.0301-0.123$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=0.194,95 \% C L=0.102-0.369$
Bmsy $=3.19$, $95 \% \mathrm{CL}=2.15-4.75$
Biomass in last year $=3.99,2.5$ th perc $=2.94,97.5$ perc $=5.29$
$B /$ Bmsy in last year $=1.25,2.5$ th perc $=0.921,97.5$ perc $=1.66$
Fishing mortality in last year $=0.127,2.5$ th perc $=0.096,97.5$ perc $=0.173$
F/Fmsy $=2.09,2.5$ th perc $=1.58,97.5$ perc $=2.84$

Stock status and exploitation in 2014
Biomass $=4.51, \mathrm{~B} / \mathrm{Bmsy}=1.41$, fishing mortality $\mathrm{F}=0.0882, \mathrm{~F} / \mathrm{Fmsy}=1.45$
Comment: OK (RF 08.06.16) Total abundance index used.

C: Analysis of viable r-k

D: Biomass

Exploitation

Species: Cetorhinus maximus, stock: bsk-nea
Basking shark in the Northeast Atlantic
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/bsk-nea.pdf
Region: Northeast Atlantic, Wide ranging
Catch data used from years 1977-2014 , abundance $=$ None
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass= 0.01-0.4 in year 1990 expert
Prior final relative biomass $=0.01-0.1$ expert
Prior range for $r=3 e-04-0.52$ expert, , prior range for $k=8.1-56142$

Results of CMSY analysis with altogether 8701 viable trajectories for 5310 r-k pairs
$r=0.0689,95 \% C L=0.011-0.431, k=60.8,95 \% C L=5.25-704$
MSY = 1.05, 95\% CL = 0.258-4.26
Relative biomass last year $=0.0513 \mathrm{k}, 2.5 \mathrm{th}=0.0113,97.5 \mathrm{th}=0.0982$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.0714$

Results for Management (based on CMSY analysis)
Fmsy $=0.0345,95 \% C L=0.00551-0.216$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.00707,95 \% C L=0.00113-0.0442$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 1.05, 95\% CL = 0.258-4.26
Bmsy $=30.4,95 \% \mathrm{CL}=2.63-352$
Biomass in last year $=3.12$, 2.5 th perc $=0.689,97.5$ perc $=5.97$
$B / B m s y$ in last year $=0.103,2.5$ th perc $=0.0227,97.5$ perc $=0.196$
Fishing mortality in last year $=0,2.5$ th perc $=0,97.5$ perc $=0$
F/Fmsy $=0,2.5$ th perc $=0,97.5$ perc $=0$

Stock status and exploitation in 2014
Biomass $=3.12$, $\mathrm{B} / \mathrm{Bmsy}=0.103$, fishing mortality $\mathrm{F}=0, \mathrm{~F} / \mathrm{Fmsy}=0$
Comment: Catches given as + assumed to be 1. OK (RF 17.04.16)

Species: Centroscymnus coelolepis, stock: cyo-nea
Portuguese dogfish in the Northeast Atlantic
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/cyo-nea.pdf
Region: Northeast Atlantic , Wide ranging
Catch data used from years 1992-2014 , abundance $=$ CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2006 expert
Prior final relative biomass $=0.01-0.1$ expert
Prior range for $r=0.015-0.1$ default , prior range for $k=96.9-2584$
Prior range of $q=1.82 \mathrm{e}-05-9.4 \mathrm{e}-05$

Results of CMSY analysis with altogether 10681 viable trajectories for 7325 r-k pairs
$r=0.062,95 \% C L=0.0397-0.097, k=734,95 \% C L=212-2544$
MSY = 11.4, 95\% CL = 2.39-54.2
Relative biomass last year $=0.052 \mathrm{k}, 2.5 \mathrm{th}=0.011,97.5$ th $=0.098$
Exploitation $F /(r / 2)$ in last year $=0.00169$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.0303,95 \% C L=0.0131-0.0697, k=1051,95 \% C L=576-1917$
MSY = 7.95, 95\% CL = 2.74-23.1
Relative biomass in last year $=0.0916 \mathrm{k}, 2.5$ th perc $=0.0435,97.5$ th perc $=0.122$
Exploitation $F /(r / 2)$ in last year $=0.00343$
$\mathrm{q}=5.09 \mathrm{e}-05, \mathrm{lcl}=3.5 \mathrm{e}-05, \mathrm{ucl}=7.41 \mathrm{e}-05$

Results for Management (based on BSM analysis)
Fmsy $=0.0151,95 \% C L=0.00657-0.0348$ (if $B>1 / 2$ Bmsy then $\mathrm{Fmsy}=0.5 r$)
Fmsy $=0.00554,95 \% C L=0.00241-0.0128$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 7.95, 95\% CL = 2.74-23.1
Bmsy $=526$, 95\% CL $=288-958$
Biomass in last year $=96.3,2.5$ th perc $=45.8,97.5$ perc $=128$
$B /$ Bmsy in last year $=0.183,2.5$ th perc $=0.0871,97.5$ perc $=0.244$
Fishing mortality in last year $=5.19 \mathrm{e}-05,2.5$ th perc $=3.89 \mathrm{e}-05,97.5$ perc $=0.000109$
F/Fmsy $=0.00937,2.5$ th perc $=0.00702,97.5$ perc $=0.0197$

Stock status and exploitation in 2014
Biomass $=96.3$, $\mathrm{B} / \mathrm{Bmsy}=0.183$, fishing mortality $\mathrm{F}=5.19 \mathrm{e}-05$, $\mathrm{F} / \mathrm{Fmsy}=0.00937$
Comment: OK (RF 11.05.16)

D: Biomass

E: Exploitation rate

F: Equilibrium curve

Species: Squalus acanthias, stock: dgs-nea
Spurdog in Northeast Atlantic
Source: http://ices.dk/sites/pub/Publication\ Reports/Advice/2014/2014/dgs-nea.pdf
Region: Northeast Atlantic , Wide ranging
Catch data used from years 1980-2013 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= $0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.0019-0.93$ expert, , prior range for $k=44.1-86248$
Prior range of $q=0.849-37.5$

Results of CMSY analysis with altogether 16979 viable trajectories for 5794 r-k pairs
$r=0.0907,95 \% C L=0.0264-0.312, k=1284,95 \% C L=208-7913$
MSY = 29.1, 95\% CL = 9.27-91.4
Relative biomass last year $=0.147 \mathrm{k}, 2.5 \mathrm{th}=0.0139,97.5$ th $=0.296$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.279$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.0744,95 \% C L=0.0374-0.148, k=1118,95 \% C L=777-1609$
MSY = 20.8, 95\% CL = 12.4-34.8
Relative biomass in last year $=0.179 \mathrm{k}, 2.5$ th perc $=0.145,97.5$ th perc $=0.228$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.321$
$\mathrm{q}=1.22, \mathrm{lcl}=0.865, \mathrm{ucl}=1.71$

Results for Management (based on BSM analysis)
Fmsy $=0.0372,95 \% C L=0.0187-0.074$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0266,95 \% C L=0.0134-0.0529$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 20.8, 95\% CL = 12.4-34.8
Bmsy $=559$, 95\% CL $=389-804$
Biomass in last year $=200,2.5$ th perc $=162,97.5$ perc $=255$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.358,2.5$ th perc $=0.289,97.5$ perc $=0.456$
Fishing mortality in last year $=0.0119,2.5$ th perc $=0.00935,97.5$ perc $=0.0147$
F/Fmsy $=0.448,2.5$ th perc $=0.352,97.5$ perc $=0.554$

Stock status and exploitation in 2014
Biomass = , B/Bmsy = , fishing mortality F = , F/Fmsy =
Comment: OK (RF 23.05.16)

B : Finding viable $r-k$

D: Biomass

Year
Catch dgs-nea

E: Exploitation rate

Year

C: Analysis of viable r-k

F: Equilibrium curve

Relative biomass B / k

Biomass

Species: Anguilla anguilla , stock: eel-eur
European eel throughout its natural range
Source: Recruitment index:
http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/eel-eur.pdf Catch statistics:
FAO FishstatJ Global Capture Production
Region: Northeast Atlantic, Wide ranging
Catch data used from years 1950-2014 , abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2010 default
Prior final relative biomass $=0.01-0.2$ expert
Prior range for $r=0.16-0.66$ expert, , prior range for $k=29.6-488$
Prior range of $q=0.000422-0.00171$
Results of CMSY analysis with altogether 756 viable trajectories for 673 r -k pairs
$r=0.292,95 \% C L=0.212-0.403, k=200,95 \% C L=159-251$
MSY = 14.6 , 95\% CL = 13.6-15.7
Relative biomass last year $=0.0951 \mathrm{k}, 2.5 \mathrm{th}=0.0115,97.5 \mathrm{th}=0.195$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.8$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.279,95 \% \mathrm{CL}=0.198-0.395, \mathrm{k}=220,95 \% \mathrm{CL}=162-298$
MSY = 15.4, 95\% CL = 12.9-18.3
Relative biomass in last year $=0.0756 \mathrm{k}, 2.5$ th perc $=0.0384,97.5$ th perc $=0.145$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.43$
$\mathrm{q}=0.000691, \mathrm{lc\mid}=0.000524, \mathrm{ucl}=0.00091$

Results for Management (based on CMSY analysis)
Fmsy $=0.146,95 \%$ CL $=0.106-0.201$ (if B > 1/2 Bmsy then Fmsy $=0.5$ r)
Fmsy $=0.0556,95 \% C L=0.0404-0.0765$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=14.6,95 \%$ CL = 13.6-15.7
Bmsy $=99.9$, 95% CL $=79.6-125$
Biomass in last year $=19,2.5$ th perc $=2.3,97.5$ perc $=39$
$B /$ Bmsy in last year $=0.19,2.5$ th perc $=0.023,97.5$ perc $=0.391$
Fishing mortality in last year $=0.175,2.5$ th perc $=0.0853,97.5$ perc $=1.45$
F/Fmsy $=3.15,2.5$ th perc $=1.53,97.5$ perc $=26.1$
Stock status and exploitation in 2014
Biomass $=19, \mathrm{~B} / \mathrm{Bmsy}=0.19$, fishing mortality $\mathrm{F}=0.175, \mathrm{~F} / \mathrm{Fmsy}=3.15$
Comment: OK (RF 09.07.16) Endbio set to 0.01-0.2. Elver abundance is recruitment and cannot be used for adult abundance. Using CMSY for management results.

Species: Galeorhinus galeus, stock: gag-nea
Tope in the Northeast Atlantic
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/gag-nea.pdf
Region: Northeast Atlantic, Wide ranging
Catch data used from years 1979-2014 , abundance = None
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 1990 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.007-0.83$ expert, , prior range for $k=2.83-1343$
Results of CMSY analysis with altogether 11589 viable trajectories for $4731 r$-k pairs
$r=0.15,95 \% \mathrm{CL}=0.0578-0.387, \mathrm{k}=30.3,95 \% \mathrm{CL}=7.28-126$
$\mathrm{MSY}=1.13,95 \% \mathrm{CL}=0.447-2.87$
Relative biomass last year $=0.13 \mathrm{k}, 2.5$ th $=0.0134,97.5$ th $=0.296$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=1.2$

Results for Management (based on CMSY analysis)
Fmsy $=0.0748,95 \% \mathrm{CL}=0.0289-0.193$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.0389,95 \% C L=0.0151-0.101$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 1.13, 95\% CL = $0.447-2.87$
Bmsy $=15.1,95 \% \mathrm{CL}=3.64-62.9$
Biomass in last year $=3.94,2.5$ th perc $=0.405,97.5$ perc $=8.95$
$\mathrm{B} /$ Bmsy in last year $=0.26,2.5$ th perc $=0.0267,97.5$ perc $=0.592$
Fishing mortality in last year $=0.0881,2.5$ th perc $=0.0388,97.5$ perc $=0.857$
$\mathrm{F} / \mathrm{Fmsy}=2.26,2.5$ th perc $=0.995,97.5$ perc $=22$
Stock status and exploitation in 2014
Biomass $=3.94, \mathrm{~B} / \mathrm{Bmsy}=0.26$, fishing mortality $\mathrm{F}=0.0881, \mathrm{~F} / \mathrm{Fmsy}=2.26$
Comment: OK (RF 12.05.16)

Year

Catch gag-nea

C: Analysis of viable r-k

F: Equilibrium curve

Relative biomass B / k

E: Exploitation rate

Year

B: Finding viable r-k

Biomass

Species: Phycis blennoides, stock: gfb-comb Great forkbeard in Northeast Atlantic
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/gfb-comb.pdf
Region: Northeast Atlantic, Wide ranging
Catch data used from years 1988-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2009 default
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.27-0.83$ expert, , prior range for $k=6.41-78.8$
Prior range of $q=0.000102-0.000356$
Results of CMSY analysis with altogether 1376 viable trajectories for 628 r -k pairs
$r=0.596,95 \% C L=0.442-0.804, k=22.6,95 \% C L=16.7-30.6$
MSY = 3.36, 95\% CL = 3.03-3.73
Relative biomass last year $=0.322 \mathrm{k}, 2.5 \mathrm{th}=0.0311,97.5 \mathrm{th}=0.397$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.69$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.604,95 \% \mathrm{CL}=0.473-0.772, \mathrm{k}=21.9,95 \% \mathrm{CL}=17.8-27$
MSY = 3.31, 95\% CL = 2.97-3.69
Relative biomass in last year $=0.334 \mathrm{k}, 2.5$ th perc $=0.24,97.5$ th perc $=0.432$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.92$
$q=0.000143, \mathrm{cl}=0.000113$, ucl $=0.000182$
Results for Management (based on CMSY analysis)
Fmsy $=0.298,95 \% \mathrm{CL}=0.221-0.402$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.298,95 \% C L=0.221-0.402$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 3.36, 95\% CL = 3.03-3.73
Bmsy = 11.3, 95\% CL = 8.34-15.3
Biomass in last year $=7.27,2.5$ th perc $=0.701,97.5$ perc $=8.95$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.644,2.5$ th perc $=0.0621,97.5$ perc $=0.793$
Fishing mortality in last year $=0.584,2.5$ th perc $=0.474,97.5$ perc $=6.05$
F/Fmsy $=1.96,2.5$ th perc $=1.59,97.5$ perc $=20.3$
Stock status and exploitation in 2014
Biomass $=7.42, \mathrm{~B} /$ Bmsy $=0.657$, fishing mortality $\mathrm{F}=0.463, \mathrm{~F} / \mathrm{Fmsy}=1.55$
Comment: OK (RF 09.06.16)

C: Analysis of viable r-k

D: Biomass

Year

Catch gfb-comb

Exploitation

E: Exploitation rate

Year

F: Equilibrium curve

Species: Centrophorus squamosus, stock: guq-nea
Leafscale gulper shark in the Northeast Atlantic
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/guq-nea.pdf
Region: Northeast Atlantic , Wide ranging
Catch data used from years 1995-2014 , abundance = None
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= 0.01 - 0.4 in year 2004 expert
Prior final relative biomass $=0.01-0.1$ expert
Prior range for $r=8 e-04-0.85$ expert, , prior range for $k=11.5-48457$

Results of CMSY analysis with altogether 8353 viable trajectories for 4975 r-k pairs
$r=0.119,95 \% C L=0.0243-0.586, k=136,95 \% C L=15.4-1197$
MSY = 4.06, 95\% CL = 1.29-12.8
Relative biomass last year $=0.0531 \mathrm{k}, 2.5 \mathrm{th}=0.0115,97.5 \mathrm{th}=0.0984$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.0658$

Results for Management (based on CMSY analysis)
Fmsy $=0.0597,95 \% C L=0.0122-0.293$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0127,95 \% C L=0.00258-0.0623$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=4.06,95 \%$ CL $=1.29-12.8$
Bmsy $=67.9$, 95\% CL $=7.71-599$
Biomass in last year $=7.21,2.5$ th perc $=1.56,97.5$ perc $=13.4$
$\mathrm{B} /$ Bmsy in last year $=0.106,2.5$ th perc $=0.023,97.5$ perc $=0.197$
Fishing mortality in last year $=0.00457,2.5$ th perc $=0.00247,97.5$ perc $=0.0211$
F/Fmsy $=0.361,2.5$ th perc $=0.195,97.5$ perc $=1.67$

Stock status and exploitation in 2014
Biomass $=7.21, \mathrm{~B} / \mathrm{Bmsy}=0.106$, fishing mortality $\mathrm{F}=0.00457$, $\mathrm{F} / \mathrm{Fmsy}=0.361$
Comment: OK (RF 23.05.16)

D: Biomass

Year

E: Exploitation rate

F: Equilibrium curve

Species: Chelidonichthys cuculus , stock: gur-comb
Red gurnard in Subareas III, IV, V, VI, VII, and VIII (Northeast Atlantic)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/gur-comb.pdf
Region: Northeast Atlantic, Wide ranging
Catch data used from years 2003-2014 , abundance $=$ None
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2008 default
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.28-1.5$ expert, , prior range for $k=3.51-75.7$
Results of CMSY analysis with altogether 2721 viable trajectories for 1899 r -k pairs
$r=0.932,95 \% \mathrm{CL}=0.613-1.42, \mathrm{k}=28,95 \% \mathrm{CL}=13.5-58.1$
MSY = 6.53, 95\% CL = 3.29-13
Relative biomass last year $=0.179 \mathrm{k}, 2.5 \mathrm{th}=0.0164,97.5 \mathrm{th}=0.295$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.94$

Results for Management (based on CMSY analysis)
Fmsy $=0.466,95 \% C L=0.306-0.71$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.333,95 \% \mathrm{CL}=0.219-0.507$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 6.53, 95\% CL = 3.29-13
Bmsy $=14,95 \%$ CL $=6.75-29.1$
Biomass in last year $=5.01,2.5$ th perc $=0.458,97.5$ perc $=8.25$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.358,2.5$ th perc $=0.0327,97.5$ perc $=0.589$
Fishing mortality in last year $=1.01,2.5$ th perc $=0.613,97.5$ perc $=11$
F/Fmsy $=3.03,2.5$ th perc $=1.84,97.5$ perc $=33.1$
Stock status and exploitation in 2014
Biomass $=5.01, \mathrm{~B} /$ Bmsy $=0.358$, fishing mortality $\mathrm{F}=1.01, \mathrm{~F} / \mathrm{Fmsy}=3.03$
Comment: OK (RF 11.05.16)

D: Biomass

E: Exploitation rate

Year

F: Equilibrium curve

Species: Merluccius merluccius, stock: hke-nrtn
Hake in Division IIIa, Subareas IV, VI and VII and Divisions VIIIa,b,d (Northern stock)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/hke-nrtn.pdf
Region: Northeast Atlantic, Wide ranging
Catch data used from years 1978-2015 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2005 expert
Prior final relative biomass $=0.5-0.9$, default
Prior range for $r=0.2-0.95$ expert, , prior range for $k=203-5772$
Prior range of $q=0.297-1.29$
Results of CMSY analysis with altogether 257 viable trajectories for 256 r -k pairs
$r=0.393,95 \% C L=0.28-0.55, k=866,95 \% C L=553-1356$
MSY = 85, 95\% CL = 53.7-135
Relative biomass last year $=0.543 \mathrm{k}, 2.5 \mathrm{th}=0.501,97.5 \mathrm{th}=0.637$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.04$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.639,95 \% \mathrm{CL}=0.45-0.907, \mathrm{k}=1131,95 \% \mathrm{CL}=828-1546$
MSY = 181, 95\% CL = 130-251
Relative biomass in last year $=0.939 \mathrm{k}$, 2.5th perc $=0.781,97.5$ th perc $=1$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.298$
$\mathrm{q}=0.279$, $\mathrm{lcl}=0.219$, ucl $=0.356$
Results for Management (based on CMSY analysis)
Fmsy $=0.196,95 \% C L=0.14-0.275$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.196,95 \% C L=0.14-0.275$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 85, 95\% CL = 53.7-135
Bmsy $=433$, 95\% CL $=277-678$
Biomass in last year $=471,2.5$ th perc $=434,97.5$ perc $=552$
$\mathrm{B} /$ Bmsy in last year $=1.09,2.5$ th perc $=1,97.5$ perc $=1.27$
Fishing mortality in last year $=0.215,2.5$ th perc $=0.183,97.5$ perc $=0.233$
$\mathrm{F} /$ Fmsy $=1.09,2.5$ th perc $=0.933,97.5$ perc $=1.19$
Stock status and exploitation in 2014
Biomass $=485, \mathrm{~B} /$ Bmsy $=1.12$, fishing mortality $\mathrm{F}=0.2, \mathrm{~F} / \mathrm{Fmsy}=1.02$
Comment: OK (RF 25.04.16)

D: Biomass

Year

B: Finding viable r-k

C: Analysis of viable r-k

E: Exploitation rate

F: Equilibrium curve

Species: Trachurus trachurus, stock: hom-west
Horse mackerel in Subarea VIII and Divisions IIa, IVa, Vb, Vla, and VIIa-c, e-k
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/hom-west.pdf
Region: Northeast Atlantic , Wide ranging
Catch data used from years 1982-2014 , abundance $=$ CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass=0.5-0.9 in year 1996 default
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.19-0.98$ expert, , prior range for $k=488-10041$
Prior range of $q=1.69-7.69$

Results of CMSY analysis with altogether 1376 viable trajectories for 1146 r-k pairs
$r=0.522,95 \% C L=0.309-0.881, k=2283,95 \% C L=1548-3366$
MSY = 298, 95\% CL = 262-339
Relative biomass last year $=0.29 \mathrm{k}, 2.5 \mathrm{th}=0.0192,97.5$ th $=0.396$
Exploitation $F /(r / 2)$ in last year $=0.902$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.506,95 \% \mathrm{CL}=0.367-0.699, \mathrm{k}=2339,95 \% \mathrm{CL}=1825-2996$
MSY = 296, 95\% CL = 244-359
Relative biomass in last year $=0.214 \mathrm{k}, 2.5$ th perc $=0.184,97.5$ th perc $=0.25$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.02$
$\mathrm{q}=2.28, \mathrm{lcl}=1.79, \mathrm{ucl}=2.89$

Results for Management (based on CMSY analysis)
Fmsy $=0.261,95 \% C L=0.155-0.44$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.261,95 \% C L=0.155-0.44$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 298, 95\% CL = 262-339
Bmsy $=1141$, 95\% CL = 774-1683
Biomass in last year $=662,2.5$ th perc $=43.9,97.5$ perc $=904$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.58,2.5$ th perc $=0.0384,97.5$ perc $=0.792$
Fishing mortality in last year $=0.195,2.5$ th perc $=0.143,97.5$ perc $=2.94$
F/Fmsy $=0.747,2.5$ th perc $=0.547,97.5$ perc $=11.3$
Stock status and exploitation in 2014
Biomass $=662, \mathrm{~B} / \mathrm{Bmsy}=0.58$, fishing mortality $\mathrm{F}=0.195, \mathrm{~F} / \mathrm{Fmsy}=0.747$
Comment: OK (RF 17.04.16)

C: Analysis of viable r-k

D: Biomass

Species: Molva molva, stock: lin-oth
Ling in Subareas VI-IX, XII, and XIV, and in Divisions IIIa and IVa (other areas)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/lin-oth.pdf
Region: Northeast Atlantic , Wide ranging
Catch data used from years 1988-2014 , abundance $=$ CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01 - 0.4 in year 2003 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.23-0.67$ expert, , prior range for $k=61.3-714$
Prior range of $q=0.00107-0.00364$

Results of CMSY analysis with altogether 2764 viable trajectories for 2410 r-k pairs
$r=0.476,95 \% C L=0.361-0.627, k=323,95 \% C L=199-527$
MSY = 38.5, 95\% CL = 23.5-63
Relative biomass last year $=0.48 \mathrm{k}, 2.5 \mathrm{th}=0.223,97.5 \mathrm{th}=0.597$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.452$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.563,95 \% C L=0.434-0.731, k=207,95 \% C L=159-270$
MSY = 29.2, 95\% CL = 25.3-33.7
Relative biomass in last year $=0.591 \mathrm{k}, 2.5$ th perc $=0.461,97.5$ th perc $=0.698$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.493$
$q=0.00118, \mathrm{lcl}=0.000936, u c l=0.00149$
Results for Management (based on CMSY analysis)
Fmsy $=0.238,95 \% C L=0.181-0.313$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.238,95 \% C L=0.181-0.313$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 38.5, 95\% CL = 23.5-63
Bmsy = 162, 95\% CL = 99.3-263
Biomass in last year $=155,2.5$ th perc $=72.2,97.5$ perc $=193$
$B /$ Bmsy in last year $=0.959,2.5$ th perc $=0.446,97.5$ perc $=1.19$
Fishing mortality in last year $=0.11,2.5$ th perc $=0.0881,97.5$ perc $=0.236$
F/Fmsy $=0.461,2.5$ th perc $=0.37,97.5$ perc $=0.991$

Stock status and exploitation in 2014
Biomass $=155$, $B / B m s y=0.959$, fishing mortality $F=0.11, F / F m s y=0.461$
Comment: OK (RF 11.05.2016) No ICES update in 2016.

D: Biomass

Year
E: Exploitation rate

Year

C: Analysis of viable r-k

F: Equilibrium curve

Species: Scomber scombrus, stock: mac-nea
Mackerel (combined Southern, Western \& N.Sea spawn.comp.)
Source: www.ices.dk
Region: Northeast Atlantic, Wide ranging
Catch data used from years 1980-2014 , abundance $=$ CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass $=0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.5-0.9$, default
Prior range for $r=0.19-1$ expert, , prior range for $k=2146-67759$
Prior range of $q=0.477-2.19$
Results of CMSY analysis with altogether 1429 viable trajectories for 1217 r -k pairs
$r=0.752,95 \% \mathrm{CL}=0.576-0.981, \mathrm{k}=3930,95 \% \mathrm{CL}=2828-5460$
MSY = 739, 95\% CL = 653-836
Relative biomass last year $=0.566 \mathrm{k}, 2.5$ th $=0.503,97.5$ th $=0.709$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.28$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.339,95 \% C L=0.251-0.459, k=8526,95 \% C L=6402-11355$
MSY = 723, 95\% CL = 636-822
Relative biomass in last year $=0.614 \mathrm{k}$, 2.5th perc $=0.518,97.5$ th perc $=0.726$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.57$
$\mathrm{q}=0.943, \mathrm{lc\mid}=0.721$, ucl $=1.23$
Results for Management (based on CMSY analysis)
Fmsy $=0.376,95 \% \mathrm{CL}=0.288-0.491$ (if $\mathrm{B}>1 / 2 \mathrm{Bmsy}$ then $\mathrm{Fmsy}=0.5 \mathrm{r}$)
Fmsy $=0.376,95 \% C L=0.288-0.491$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 739, 95\% CL = 653-836
Bmsy $=1965$, 95\% CL = 1414-2730
Biomass in last year $=2223,2.5$ th perc $=1976,97.5$ perc $=2786$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=1.13,2.5$ th perc $=1.01,97.5$ perc $=1.42$
Fishing mortality in last year $=0.627,2.5$ th perc $=0.5,97.5$ perc $=0.706$
F/Fmsy $=1.67,2.5$ th perc $=1.33,97.5$ perc $=1.88$
Stock status and exploitation in 2014
Biomass $=2223, \mathrm{~B} / \mathrm{Bmsy}=1.13$, fishing mortality $\mathrm{F}=0.627, \mathrm{~F} / \mathrm{Fmsy}=1.67$
Comment: OK (RF 17.04.16)

D: Biomass

Year

Catch mac-ne

Exploitation

E: Exploitation rate

Year

F: Equilibrium curve

Relative biomass B / k

Species: Mullus surmuletus, stock: mur-west
Striped red mullet in Subareas VI and VIII and Divisions VIIa-c, e-k and IXa (West of Scotland, Bay of Biscay, Southern Celtic Seas, Atlantic Iberian Waters)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/mur-west.pdf
Region: Northeast Atlantic, Wide ranging
Catch data used from years 1975-2014 , abundance = None
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2006 default
Prior final relative biomass $=0.2-0.6$, default
Prior range for $r=0.46-1.6$ expert, , prior range for $k=1.8-24.8$
Results of CMSY analysis with altogether 1811 viable trajectories for 674 r -k pairs
$r=1.16,95 \% \mathrm{CL}=0.865-1.55, \mathrm{k}=8.32$, $95 \% \mathrm{CL}=5.81-11.9$
MSY = 2.41, 95\% CL = 2.11-2.75
Relative biomass last year $=0.397 \mathrm{k}, 2.5 \mathrm{th}=0.214,97.5 \mathrm{th}=0.588$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=0.882$

Results for Management (based on CMSY analysis)
Fmsy $=0.579,95 \% C L=0.433-0.776$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.579,95 \% C L=0.433-0.776$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=2.41,95 \%$ CL $=2.11-2.75$
Bmsy $=4.16,95 \%$ CL $=2.9-5.95$
Biomass in last year $=3.3,2.5$ th perc $=1.78,97.5$ perc $=4.89$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.795,2.5$ th perc $=0.427,97.5$ perc $=1.18$
Fishing mortality in last year $=0.424,2.5$ th perc $=0.287,97.5$ perc $=0.789$
F/Fmsy $=0.732,2.5$ th perc $=0.494,97.5$ perc $=1.36$
Stock status and exploitation in 2014
Biomass $=3.3, B /$ Bmsy $=0.795$, fishing mortality $\mathrm{F}=0.424, \mathrm{~F} / \mathrm{Fmsy}=0.732$
Comment: OK (RF 12.05.16)

B: Finding viable r-k

C: Analysis of viable r-k

D: Biomass

Exploitation

E: Exploitation rate

F: Equilibrium curve

Species: Hoplostethus atlanticus, stock: ory-comb
Orange roughy in the Northeast Atlantic
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/ory-comb.pdf
Region: Northeast Atlantic, Wide ranging
Catch data used from years 1991-2015, abundance $=$ None
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass $=0.01-0.4$ in year 2003 expert
Prior final relative biomass $=0.01-0.1$ expert
Prior range for $r=0.05-0.8$ expert, , prior range for $k=6.28-402$

Results of CMSY analysis with altogether 3264 viable trajectories for 2824 r - k pairs
$r=0.309,95 \% C L=0.171-0.557, k=46.1,95 \% C L=17.1-124$
MSY = 3.56, 95\% CL = 1.56-8.09
Relative biomass last year $=0.045 \mathrm{k}, 2.5 \mathrm{th}=0.0109,97.5 \mathrm{th}=0.0968$
Exploitation $F /(r / 2)$ in last year $=0.213$

Results for Management (based on CMSY analysis)
Fmsy $=0.154,95 \% C L=0.0856-0.279$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0278,95 \% C L=0.0154-0.0502$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=3.56,95 \% \mathrm{CL}=1.56-8.09$
Bmsy $=23$, 95\% CL $=8.56-61.9$
Biomass in last year $=2.07,2.5$ th perc $=0.503,97.5$ perc $=4.46$
$B /$ Bmsy in last year $=0.0901,2.5$ th perc $=0.0219,97.5$ perc $=0.194$
Fishing mortality in last year $=0.0434,2.5$ th $\operatorname{perc}=0.0202,97.5$ perc $=0.179$
F/Fmsy $=1.56,2.5$ th perc $=0.726,97.5$ perc $=6.43$

Stock status and exploitation in 2014
Biomass $=2.03, \mathrm{~B} / \mathrm{Bmsy}=0.0883$, fishing mortality $\mathrm{F}=0.0236$, $\mathrm{F} / \mathrm{Fmsy}=0.866$
Comment: OK (RF 09.06.16)

D: Biomass

Catch ory-comb

Species: Lamna nasus, stock: por-nea
Porbeagle in the Northeast Atlantic
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/por-nea.pdf
Region: Northeast Atlantic, Wide ranging
Catch data used from years 1947-2014 , abundance $=$ None
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= 0.01 - 0.3 in year 1963 expert
Prior final relative biomass $=0.01-0.1$ expert
Prior range for $r=0.015-0.1$ default , prior range for $k=61.2-1633$

Results of CMSY analysis with altogether 2846 viable trajectories for 2604 r-k pairs
$r=0.062,95 \% C L=0.0397-0.097, k=131,95 \% C L=52.8-325$
MSY = 2.03, 95\% CL = 0.822-5.02
Relative biomass last year $=0.0486 \mathrm{k}, 2.5 \mathrm{th}=0.0116,97.5 \mathrm{th}=0.0972$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.13$

Results for Management (based on CMSY analysis)
Fmsy $=0.031,95 \% C L=0.0198-0.0485$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.00604,95 \% C L=0.00386-0.00943$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 2.03, 95\% CL = 0.822-5.02
Bmsy $=65.5$, 95\% CL $=26.4-162$
Biomass in last year $=6.37,2.5$ th perc $=1.52,97.5$ perc $=12.7$
$B / B m s y$ in last year $=0.0973,2.5$ th perc $=0.0233,97.5$ perc $=0.194$
Fishing mortality in last year $=0.0011,2.5$ th perc $=0.00055,97.5$ perc $=0.00459$
F/Fmsy $=0.182,2.5$ th perc $=0.0911,97.5$ perc $=0.761$

Stock status and exploitation in 2014
Biomass $=6.37$, $\mathrm{B} / \mathrm{Bmsy}=0.0973$, fishing mortality $\mathrm{F}=0.0011$, $\mathrm{F} / \mathrm{Fmsy}=0.182$
Comment: OK (RF 13.05.16)

Year

B: Finding viable r-k

C: Analysis of viable r-k

Year
Catch por-nea

D: Biomass

E: Exploitation rate

Year

F: Equilibrium curve

Relative biomass B / k

Species: Raja clavata , stock: raj-mar
Rays and skates, mainly thornback ray, in Subareas X and XII (Azores grounds and north of Azores)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/raj-mar.pdf
Region: Northeast Atlantic, Wide ranging
Catch data used from years 1988-2014 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.2-0.6 in year 2003 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.024-0.9$ expert, , prior range for $k=0.15-22.5$
Prior range of $q=0.546-6.7$
Results of CMSY analysis with altogether 8463 viable trajectories for 2356 r -k pairs
$r=0.359,95 \% \mathrm{CL}=0.153-0.844, \mathrm{k}=0.832,95 \% \mathrm{CL}=0.295-2.35$
MSY $=0.0747$, 95% CL $=0.0521-0.107$
Relative biomass last year $=0.275 \mathrm{k}, 2.5 \mathrm{th}=0.0334,97.5 \mathrm{th}=0.396$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=3.29$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.138,95 \% \mathrm{CL}=0.0526-0.361, k=1.87,95 \% \mathrm{CL}=0.901-3.88$
MSY $=0.0645,95 \% \mathrm{CL}=0.0395-0.105$
Relative biomass in last year $=0.288 \mathrm{k}$, 2.5th perc $=0.079,97.5$ th perc $=0.468$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=5.04$
$\mathrm{q}=1.27, \mathrm{lcl}=0.768$, ucl $=2.1$
Results for Management (based on CMSY analysis)
Fmsy $=0.179,95 \% C L=0.0763-0.422$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.179,95 \% C L=0.0763-0.422$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.0747,95 \%$ CL $=0.0521-0.107$
Bmsy $=0.416,95 \%$ CL $=0.147-1.18$
Biomass in last year $=0.229,2.5$ th perc $=0.0278,97.5$ perc $=0.329$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.549,2.5$ th perc $=0.0669,97.5$ perc $=0.792$
Fishing mortality in last year $=0.818,2.5$ th perc $=0.568,97.5$ perc $=6.72$
F/Fmsy $=4.56,2.5$ th perc $=3.16,97.5$ perc $=37.4$
Stock status and exploitation in 2014
Biomass $=0.229, \mathrm{~B} / \mathrm{Bmsy}=0.549$, fishing mortality $\mathrm{F}=0.818, \mathrm{~F} / \mathrm{Fmsy}=4.56$
Comment: OK (RF 18.05.16)

B : Finding viable $r-k$

E: Exploitation rate

Year

C: Analysis of viable r-k

D: Biomass

Exploitation

Species: Macrourus berglax , stock: rhg-nea
Roughhead grenadier in the Northeast Atlantic
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/rhg-nea.pdf
Region: Northeast Atlantic , Wide ranging
Catch data used from years 1990-2014 , abundance $=$ None
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 2005 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.06-0.41$ expert, , prior range for $k=7-191$

Results of CMSY analysis with altogether 4228 viable trajectories for 3251 r-k pairs
$r=0.254,95 \% C L=0.161-0.401, k=66,95 \% C L=19.8-220$
MSY $=4.19,95 \% \mathrm{CL}=0.966-18.2$
Relative biomass last year $=0.117 \mathrm{k}, 2.5 \mathrm{th}=0.0133,97.5$ th $=0.292$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.87$

Results for Management (based on CMSY analysis)
Fmsy $=0.127,95 \% C L=0.0805-0.2$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0593,95 \% C L=0.0376-0.0935$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=4.19,95 \%$ CL $=0.966-18.2$
Bmsy $=33$, 95\% CL = 9.89-110
Biomass in last year $=7.69$, 2.5th perc $=0.877,97.5$ perc $=19.3$
B/Bmsy in last year $=0.233,2.5$ th perc $=0.0266,97.5$ perc $=0.585$
Fishing mortality in last year $=0.085,2.5$ th perc $=0.0339,97.5$ perc $=0.745$
F/Fmsy $=1.43,2.5$ th perc $=0.572,97.5$ perc $=12.6$

Stock status and exploitation in 2014
Biomass $=7.69, \mathrm{~B} / \mathrm{Bmsy}=0.233$, fishing mortality $\mathrm{F}=0.085, \mathrm{~F} / \mathrm{Fmsy}=1.43$
Comment: OK (RF 23.05.16) No ICES update in 2016.

D: Biomass

F: Equilibrium curve

Exploitation

Species: Coryphaenoides rupestris, stock: rng-1012
Roundnose grenadier in in Divisions Xb and XIIc, and Subdivisions XIIa1, XIVb1, and Va1 (Oceanic Northeast Atlantic and Northern Reykjanes Ridge)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/rng-1012.pdf
Region: Northeast Atlantic, Wide ranging
Catch data used from years 1980-2014 , abundance $=$ None
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= $0.01-0.4$ in year 1990 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.1-0.69$ expert, , prior range for $k=25.1-697$

Results of CMSY analysis with altogether 3888 viable trajectories for 3472 r-k pairs
$r=0.31,95 \% C L=0.202-0.478, k=162,95 \% C L=77-341$
MSY = 12.6, 95\% CL = 5.93-26.6
Relative biomass last year $=0.0944 \mathrm{k}, 2.5 \mathrm{th}=0.0118,97.5 \mathrm{th}=0.283$
Exploitation $F /(r / 2)$ in last year $=1.16$

Results for Management (based on CMSY analysis)
Fmsy $=0.155,95 \% C L=0.101-0.239$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0586,95 \% C L=0.0381-0.0901$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 12.6, 95\% CL = 5.93-26.6
Bmsy $=81$, 95\% CL = 38.5-170
Biomass in last year $=15.3,2.5$ th perc $=1.91,97.5$ perc $=45.8$
$B /$ Bmsy in last year $=0.189,2.5$ th perc $=0.0236,97.5$ perc $=0.566$
Fishing mortality in last year $=0.228,2.5$ th perc $=0.076,97.5$ perc $=1.82$
F/Fmsy $=3.89,2.5$ th perc $=1.3,97.5$ perc $=31.1$

Stock status and exploitation in 2014
Biomass $=15.3, \mathrm{~B} / \mathrm{Bmsy}=0.189$, fishing mortality $\mathrm{F}=0.228, \mathrm{~F} / \mathrm{Fmsy}=3.89$
Comment: OK (RF 13.05.16)

D: Biomass

Year

Catch rng-1012

E: Exploitation rate

Year

F: Equilibrium curve

Relative biomass B / k

Exploitation

Species: Coryphaenoides rupestris, stock: rng-oth
Roundnose grenadier in Subareas I, II, IV, VIII, and IX, Division XIVa, and Subdivisions XIVb2 and Va2 (Northeast Atlantic)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/rng-oth.pdf
Region: Northeast Atlantic, Wide ranging
Catch data used from years 1990-2014 , abundance $=$ None
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= $0.01-0.4$ in year 2008 default
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.1-0.69$ expert, , prior range for $k=0.505-14$
Results of CMSY analysis with altogether 3746 viable trajectories for 2512 r -k pairs
$r=0.401,95 \% C L=0.248-0.646, k=2.32,95 \% C L=1.27-4.25$
$\mathrm{MSY}=0.232,95 \% \mathrm{CL}=0.169-0.32$
Relative biomass last year $=0.14 \mathrm{k}, 2.5 \mathrm{th}=0.0155,97.5 \mathrm{th}=0.294$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.25$

Results for Management (based on CMSY analysis)
Fmsy $=0.2,95 \% C L=0.124-0.323$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.112,95 \% C L=0.0694-0.181$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.232,95 \% \mathrm{CL}=0.169-0.32$
Bmsy $=1.16,95 \% \mathrm{CL}=0.633-2.12$
Biomass in last year $=0.324,2.5$ th perc $=0.0359,97.5$ perc $=0.682$
$B /$ Bmsy in last year $=0.279,2.5$ th perc $=0.031,97.5$ perc $=0.589$
Fishing mortality in last year $=0.157,2.5$ th perc $=0.0747,97.5$ perc $=1.42$
F/Fmsy $=1.41,2.5$ th perc $=0.668,97.5$ perc $=12.7$
Stock status and exploitation in 2014
Biomass $=0.324, B /$ Bmsy $=0.279$, fishing mortality $\mathrm{F}=0.157, \mathrm{~F} / \mathrm{Fmsy}=1.41$
Comment: OK (RF 11.05.16)

Species: Salmo salar, stock: salmon-NEAC
Atlantic salmon from the Northeast Atlantic
Source:
http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/Salmon_NEAC_2015.pdf
Region: Northeast Atlantic , Wide ranging
Catch data used from years 1960-2014 , abundance $=$ None
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass= $0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.13-1$ expert, , prior range for $k=7.42-235$

Results of CMSY analysis with altogether 905 viable trajectories for 834 r-k pairs
$r=0.273,95 \% C L=0.215-0.346, k=90.3,95 \% C L=62.2-131$
MSY = 6.15, 95\% CL = 4.72-8.01
Relative biomass last year $=0.116 \mathrm{k}, 2.5$ th $=0.0132,97.5$ th $=0.293$
Exploitation $F /(r / 2)$ in last year $=0.764$

Results for Management (based on CMSY analysis)
Fmsy $=0.136,95 \% C L=0.107-0.173$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0632,95 \% C L=0.0498-0.0801$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 6.15, 95\% CL = 4.72-8.01
Bmsy $=45.1$, 95\% CL $=31.1-65.5$
Biomass in last year $=10.5,2.5$ th perc $=1.19,97.5$ perc $=26.4$
$B /$ Bmsy in last year $=0.232,2.5$ th perc $=0.0264,97.5$ perc $=0.586$
Fishing mortality in last year $=0.0897,2.5$ th perc $=0.0355,97.5$ perc $=0.786$
F/Fmsy $=1.42,2.5$ th perc $=0.561,97.5$ perc $=12.4$

Stock status and exploitation in 2014
Biomass $=10.5, B / B m s y=0.232$, fishing mortality $F=0.0897, F / F m s y=1.42$
Comment: OK (RF 09.07.16)

D: Biomass

F: Equilibrium curve

Exploitation

Species: Dalatias licha, stock: sck-nea
Kitefin shark in the Northeast Atlantic
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/sck-nea.pdf
Region: Northeast Atlantic , Wide ranging
Catch data used from years 1988-2014 , abundance $=$ None
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass= 0.01-0.4 in year 2009 default
Prior final relative biomass $=0.01-0.4$, default
Prior range for $r=0.05-0.5$ default , prior range for $k=1.53-61$

Results of CMSY analysis with altogether 5370 viable trajectories for 2839 r-k pairs
$r=0.27,95 \% C L=0.152-0.478, k=8.95,95 \% C L=3.61-22.2$
MSY = 0.604, 95\% CL = 0.289-1.26
Relative biomass last year $=0.0955 \mathrm{k}, 2.5 \mathrm{th}=0.0122,97.5 \mathrm{th}=0.371$
Exploitation $F /(r / 2)$ in last year $=0.00289$

Results for Management (based on CMSY analysis)
Fmsy $=0.135,95 \% C L=0.0761-0.239$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0516,95 \% C L=0.0291-0.0914$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.604,95 \% C L=0.289-1.26$
Bmsy $=4.48$, 95\% CL $=1.81-11.1$
Biomass in last year $=0.856,2.5$ th perc $=0.109,97.5$ perc $=3.33$
$B /$ Bmsy in last year $=0.191,2.5$ th perc $=0.0244,97.5$ perc $=0.743$
Fishing mortality in last year $=0,2.5$ th perc $=0,97.5$ perc $=0$
F/Fmsy $=0,2.5$ th perc $=0,97.5$ perc $=0$

Stock status and exploitation in 2014
Biomass $=0.856, B / B m s y=0.191$, fishing mortality $\mathrm{F}=0, \mathrm{~F} / \mathrm{Fmsy}=0$
Comment: OK (RF 15.04.16)

D: Biomass

Year

B: Finding viable r-k

Catch sck-nea

Species: Mustelus spp., stock: trk-nea
Smooth-hound in the Northeast Atlantic
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/trk-nea.pdf
Region: Northeast Atlantic, Wide ranging
Catch data used from years 1993-2014 , abundance $=$ CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01 - 0.4 in year 2003 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.05-0.5$ default , prior range for $k=6.82-273$
Prior range of $q=0.000128-0.000812$

Results of CMSY analysis with altogether 8941 viable trajectories for 4890 r-k pairs
$r=0.282,95 \% C L=0.163-0.487, k=51.2,95 \% C L=12.2-215$
MSY = 3.61, 95\% CL = 0.629-20.7
Relative biomass last year $=0.43 \mathrm{k}, 2.5$ th $=0.209,97.5$ th $=0.594$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.1$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.323,95 \% C L=0.202-0.516, \mathrm{k}=27.3,95 \% \mathrm{CL}=15.7-47.5$
$\mathrm{MSY}=2.21,95 \% \mathrm{CL}=1.03-4.7$
Relative biomass in last year $=0.301 \mathrm{k}, 2.5$ th perc $=0.191,97.5$ th perc $=0.469$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.78$
$q=0.000205, \mathrm{lcl}=0.00014, \mathrm{ucl}=3 \mathrm{e}-04$
Results for Management (based on CMSY analysis)
Fmsy $=0.141,95 \% C L=0.0817-0.244$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.141,95 \% C L=0.0817-0.244$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=3.61$, 95% CL $=0.629-20.7$
Bmsy $=25.6$, 95\% CL = 6.08-108
Biomass in last year $=22,2.5$ th perc $=10.7,97.5$ perc $=30.4$
$B /$ Bmsy in last year $=0.861,2.5$ th perc $=0.419,97.5$ perc $=1.19$
Fishing mortality in last year $=0.168,2.5$ th perc $=0.121,97.5$ perc $=0.344$
F/Fmsy $=1.19,2.5$ th perc $=0.861,97.5$ perc $=2.44$

Stock status and exploitation in 2014
Biomass $=22$, $\mathrm{B} / \mathrm{Bmsy}=0.861$, fishing mortality $\mathrm{F}=0.168$, $\mathrm{F} / \mathrm{Fmsy}=1.19$
Comment: OK (RF 23.05.16)

D: Biomass

Catch trk-nea

Exploitation

E: Exploitation rate

F: Equilibrium curve

Species: Brosme brosme , stock: usk-mar
Tusk in Subarea XII, excluding Division XIIb (Southern Mid-Atlantic Ridge)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/usk-mar.pdf
Region: Northeast Atlantic, Wide ranging
Catch data used from years 1988-2013 , abundance = None
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2003 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.2-0.64$ expert, , prior range for $k=0.107-1.37$
Results of CMSY analysis with altogether 1977 viable trajectories for $1510 \mathrm{r}-\mathrm{k}$ pairs
$r=0.33,95 \% \mathrm{CL}=0.18-0.604, \mathrm{k}=0.317,95 \% \mathrm{CL}=0.256-0.393$
MSY $=0.0261,95 \% \mathrm{CL}=0.0233-0.0292$
Relative biomass last year $=0.0552 \mathrm{k}, 2.5$ th $=0.0116,97.5$ th $=0.316$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.116$

Results for Management (based on CMSY analysis)
Fmsy $=0.165,95 \% \mathrm{CL}=0.0899-0.302$ (if $\mathrm{B}>1 / 2 \mathrm{Bmsy}$ then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.0364,95 \% C L=0.0199-0.0667$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.0261,95 \%$ CL $=0.0233-0.0292$
Bmsy $=0.158,95 \% \mathrm{CL}=0.128-0.196$
Biomass in last year $=0.0175,2.5$ th perc $=0.00368,97.5$ perc $=0.1$
$\mathrm{B} /$ Bmsy in last year $=0.11,2.5$ th perc $=0.0232,97.5$ perc $=0.633$
Fishing mortality in last year $=0,2.5$ th perc $=0,97.5$ perc $=0$
F/Fmsy $=0,2.5$ th perc $=0,97.5$ perc $=0$

Stock status and exploitation in 2014
Biomass = , B/Bmsy = , fishing mortality F = , F/Fmsy =
Comment: OK (RF 28.06.16)

B: Finding viable $\mathrm{r}-\mathrm{k}$

E: Exploitation rate

Species: Brosme brosme , stock: usk-oth
Tusk in Divisions IIIa, Vb, Vla, and XIIb and Subareas IV, VII, VIII, and IX (other areas).
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/usk-oth.pdf
Region: Northeast Atlantic, Wide ranging
Catch data used from years 2000-2014 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.2-0.6 in year 2007 default
Prior final relative biomass $=0.2-0.6$, default
Prior range for $\mathrm{r}=0.2-0.64$ expert, , prior range for $\mathrm{k}=13.7-175$
Prior range of $q=0.00301-0.0108$
Results of CMSY analysis with altogether 10212 viable trajectories for 2883 r -k pairs
$r=0.48,95 \% \mathrm{CL}=0.364-0.632, \mathrm{k}=72.3,95 \% \mathrm{CL}=42.7-123$
MSY = 8.67, 95\% CL = 5.29-14.2
Relative biomass last year $=0.48 \mathrm{k}, 2.5$ th $=0.22,97.5$ th $=0.595$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.645$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.761,95 \% \mathrm{CL}=0.594-0.976, \mathrm{k}=47.6,95 \% \mathrm{CL}=36.4-62.4$
$\mathrm{MSY}=9.07,95 \% \mathrm{CL}=7.98-10.3$
Relative biomass in last year $=0.66 \mathrm{k}$, 2.5th perc $=0.546,97.5$ th perc $=0.757$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.383$
$\mathrm{q}=0.00457, \mathrm{lcl}=0.00357, \mathrm{ucl}=0.00585$
Results for Management (based on CMSY analysis)
Fmsy $=0.24,95 \% C L=0.182-0.316$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.24,95 \% C L=0.182-0.316$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 8.67, 95\% CL = 5.29-14.2
Bmsy $=36.2$, 95% CL $=21.3-61.3$
Biomass in last year $=34.7,2.5$ th perc $=15.9,97.5$ perc $=43$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.961,2.5$ th perc $=0.439,97.5$ perc $=1.19$
Fishing mortality in last year $=0.132,2.5$ th perc $=0.107,97.5$ perc $=0.289$
F/Fmsy $=0.551,2.5$ th perc $=0.445,97.5$ perc $=1.2$
Stock status and exploitation in 2014
Biomass $=34.7, \mathrm{~B} / \mathrm{Bmsy}=0.961$, fishing mortality $\mathrm{F}=0.132$, $\mathrm{F} / \mathrm{Fmsy}=0.551$
Comment: OK (RF 15.04.16) Standardized cpue for 4-5 longliners (<110 GRT) fishing in Faroese waters (criteria: ling \& tusk >60\% of catch and depth below 200 m). Set from Low to Medium resilience.

D: Biomass

