Appendix I

Detailed stock assessment reports for the Northeast Atlantic

Barents Sea and Norwegian Sea (analyzed with CMSY_O_7m.R)

Species: Mallotus villosus , stock: cap-bars
Capelin in Subareas I and II (Northeast Arctic), excluding Division Ila west of $5^{\circ} \mathrm{W}$
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/cap-bars.pdf
Region: Northeast Atlantic , Barents Sea
Catch data used from years 1972-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass $=0.01-0.2$ in year 1987 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.17-1.1$ expert, , prior range for $k=2249-58737$
Prior range of $q=0.521-2.66$
Results of CMSY analysis with altogether 1305 viable trajectories for 1247 r-k pairs
$r=0.402,95 \% C L=0.285-0.567, k=18034,95 \% C L=10887-29874$
MSY = 1810, 95\% CL = 1150-2850
Relative biomass last year $=0.0835 \mathrm{k}, 2.5$ th $=0.0147,97.5$ th $=0.281$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.395$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.413,95 \% \mathrm{CL}=0.284-0.6, \mathrm{k}=16197,95 \% \mathrm{CL}=11523-22767$
MSY = 1670, 95\% CL = 1372-2034
Relative biomass in last year $=0.18 \mathrm{k}, 2.5$ th perc $=0.0504$, 97.5 th perc $=0.335$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.191$
$\mathrm{q}=0.88, \mathrm{lc\mid}=0.634, \mathrm{ucl}=1.22$
Results for Management (based on BSM analysis)
Fmsy $=0.206,95 \% C L=0.142-0.3$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.149,95 \% C L=0.102-0.216$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 1670, 95\% CL = 1372-2034
Bmsy $=8098,95 \% \mathrm{CL}=5761-11383$
Biomass in last year $=2921,2.5$ th perc $=817,97.5$ perc $=5434$
$\mathrm{B} /$ Bmsy in last year $=0.361,2.5$ th perc $=0.101,97.5$ perc $=0.671$
Fishing mortality in last year $=0.0394,2.5$ th perc $=0.0212,97.5$ perc $=0.141$
F/Fmsy $=0.265,2.5$ th perc $=0.142,97.5$ perc $=0.946$
Stock status and exploitation in 2014
Biomass $=2551, B /$ Bmsy $=0.315$, fishing mortality $F=0.0259, ~ F / F m s y=0.199$
Comment: OK (RF 26.09.16) r updated

E: Exploitation rate

Exploitation

Species: Gadus morhua , stock: cod-arct
Cod in Subareas I and II (Northeast Arctic cod)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/cod-arct.pdf Region: Northeast Atlantic , Barents Sea
Catch data used from years 1990-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass $=0.01-0.4$ in year 2008 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.23-0.96$ expert, , prior range for $k=1956-48992$
Prior range of $q=0.139-0.57$

Results of CMSY analysis with altogether 1708 viable trajectories for 1707 r-k pairs
$r=0.6,95 \% C L=0.398-0.907, k=17945,95 \% C L=7459-43172$
MSY = 2694, 95\% CL = 875-8297
Relative biomass last year $=0.775 \mathrm{k}, 2.5$ th $=0.516,97.5$ th $=0.894$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.225$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.46,95 \% C L=0.328-0.644, k=9714,95 \% C L=6536-14438$
MSY = 1116, 95\% CL = 745-1671
Relative biomass in last year $=0.664 \mathrm{k}, 2.5$ th perc $=0.495,97.5$ th perc $=0.855$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.583$
$q=0.236, \mathrm{lc\mid}=0.178, \mathrm{ucl}=0.313$
Results for Management (based on BSM analysis)
Fmsy $=0.23,95 \% \mathrm{CL}=0.164-0.322$ (if $\mathrm{B}>1 / 2$ Bmsy then $\mathrm{Fmsy}=0.5 \mathrm{r}$)
Fmsy $=0.23,95 \% C L=0.164-0.322$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 1116, 95\% CL = 745-1671
Bmsy $=4857$, 95\% CL $=3268-7219$
Biomass in last year $=6451$, 2.5th perc $=4804,97.5$ perc $=8310$
$B /$ Bmsy in last year $=1.33,2.5$ th perc $=0.989,97.5$ perc $=1.71$
Fishing mortality in last year $=0.134,2.5$ th perc $=0.104,97.5$ perc $=0.18$
F/Fmsy $=0.583,2.5$ th perc $=0.453,97.5$ perc $=0.783$

Stock status and exploitation in 2014
Biomass $=7639, ~ B / B m s y=1.57$, fishing mortality $\mathrm{F}=0.129, F / F m s y=0.562$
Comment: OK (RF 26.09.2016)

D: Biomass

Catch cod-arct

E: Exploitation rate

Year

F: Equilibrium curve

Species: Gadus morhua , stock: cod-coas
Cod in Subareas I and II (Norwegian coastal waters cod)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/cod-coas.pdf Region: Northeast Atlantic , Norwegian Sea
Catch data used from years 1984-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass $=0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.23-0.96$ expert, , prior range for $k=92.2-1539$
Prior range of $q=0.121-0.493$

Results of CMSY analysis with altogether 1448 viable trajectories for 1205 r -k pairs
$r=0.458,95 \% \mathrm{CL}=0.313-0.671, \mathrm{k}=582,95 \% \mathrm{CL}=399-850$
MSY = 66.7, 95\% CL = 48.8-91.2
Relative biomass last year $=0.28 \mathrm{k}, 2.5$ th $=0.0198,97.5$ th $=0.397$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.1$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.566,95 \% \mathrm{CL}=0.401-0.798, \mathrm{k}=454,95 \% \mathrm{CL}=330-624$
MSY = 64.2, 95\% CL = 52.8-78
Relative biomass in last year $=0.268 \mathrm{k}, 2.5$ th perc $=0.135,97.5$ th perc $=0.412$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.52$
$\mathrm{q}=0.192, \mathrm{lc\mid}=0.146, \mathrm{ucl}=0.252$
Results for Management (based on BSM analysis)
Fmsy $=0.283,95 \% C L=0.2-0.399$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.283,95 \% C L=0.2-0.399$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=64.2$, 95% CL $=52.8-78$
Bmsy $=227,95 \% \mathrm{CL}=165-312$
Biomass in last year $=122,2.5$ th perc $=61.4,97.5$ perc $=187$
$\mathrm{B} /$ Bmsy in last year $=0.536,2.5$ th perc $=0.27,97.5$ perc $=0.824$
Fishing mortality in last year $=0.429,2.5$ th perc $=0.279,97.5$ perc $=0.85$
F/Fmsy $=1.52,2.5$ th perc $=0.986,97.5$ perc $=3$

Stock status and exploitation in 2014
Biomass $=120, \mathrm{~B} / \mathrm{Bmsy}=0.531$, fishing mortality $\mathrm{F}=0.298, \mathrm{~F} / \mathrm{Fmsy}=1.05$
Comment: OK (RF 26.09.16)

D: Biomass

Catch cod-coas

Exploitation

E: Exploitation rate

Year

C: Analysis of viable r-k

F: Equilibrium curve

Species: Reinhardtius hippoglossoides , stock: ghl-arct
Greenland halibut in Subareas I and II
Source: http://ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/ghl-arct.pdf
Region: Northeast Atlantic , Barents Sea
Catch data used from years 1992-2014, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.2-0.6 in year 2005 default
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.16-0.68$ expert, , prior range for $k=63.4-1617$
Prior range of $q=3.15-13$

Results of CMSY analysis with altogether 5563 viable trajectories for 2572 r -k pairs
$r=0.472,95 \% C L=0.336-0.665, k=156,95 \% C L=93.6-261$
MSY = 18.4, 95\% CL = 13.2-25.7
Relative biomass last year $=0.558 \mathrm{k}, 2.5$ th $=0.503,97.5$ th $=0.728$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.05$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.383,95 \% \mathrm{CL}=0.291-0.504, \mathrm{k}=195,95 \% \mathrm{CL}=147-259$
MSY = 18.7, 95\% CL = 15.9-21.9
Relative biomass in last year $=0.701 \mathrm{k}, 2.5$ th perc $=0.564$, 97.5 th perc $=0.844$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.849$
$\mathrm{q}=5.3, \mathrm{lcl}=3.92, \mathrm{ucl}=7.18$

Results for Management (based on BSM analysis)
Fmsy $=0.192,95 \% C L=0.146-0.252$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.192,95 \% C L=0.146-0.252$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 18.7, 95\% CL = 15.9-21.9
Bmsy = 97.5, 95\% CL = 73.3-130
Biomass in last year $=137,2.5$ th perc $=110,97.5$ perc $=165$
$B /$ Bmsy in last year $=1.4,2.5$ th perc $=1.13,97.5$ perc $=1.69$
Fishing mortality in last year $=0.163,2.5$ th perc $=0.135,97.5$ perc $=0.202$
F/Fmsy $=0.849,2.5$ th perc $=0.706,97.5$ perc $=1.06$
Stock status and exploitation in 2014
Biomass $=137, B / B m s y=1.4$, fishing mortality $\mathrm{F}=0.163, \mathrm{~F} / \mathrm{Fmsy}=0.849$
Comment: OK (RF 26.09.16)

D: Biomass
E: Exploitation rate

Species: Melanogrammus aeglefinus, stock: had-arct
Haddock in Subareas I and II (Northeast Arctic)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/had-arct.pdf Region: Northeast Atlantic , Barents Sea
Catch data used from years 1950-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass $=0.01-0.4$ in year 2006 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.23-1$ expert, , prior range for $k=583-15211$
Prior range of $q=0.165-0.69$

Results of CMSY analysis with altogether 13 viable trajectories for $13 \mathrm{r}-\mathrm{k}$ pairs
$r=0.333,95 \% \mathrm{CL}=0.256-0.433, \mathrm{k}=8663,95 \% \mathrm{CL}=6648-11288$
MSY $=721,95 \%$ CL $=600-866$
Relative biomass last year $=0.66 \mathrm{k}, 2.5 \mathrm{th}=0.609,97.5 \mathrm{th}=0.8$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.198$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.411,95 \% \mathrm{CL}=0.282-0.6, \mathrm{k}=4623,95 \% \mathrm{CL}=3234-6608$
MSY $=475,95 \%$ CL $=298-758$
Relative biomass in last year $=0.87 \mathrm{k}, 2.5$ th perc $=0.627,97.5$ th perc $=0.995$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.236$
$q=0.202, \mathrm{lcl}=0.158, u c \mid=0.259$

Results for Management (based on BSM analysis)
Fmsy $=0.205,95 \% C L=0.141-0.3$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.205,95 \% C L=0.141-0.3$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=475,95 \% \mathrm{CL}=298-758$
Bmsy $=2311$, 95\% CL = 1617-3304
Biomass in last year $=4020$, 2.5th perc $=2899,97.5$ perc $=4598$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=1.74,2.5$ th perc $=1.25,97.5$ perc $=1.99$
Fishing mortality in last year $=0.0484,2.5$ th perc $=0.0424,97.5$ perc $=0.0672$
F/Fmsy $=0.236,2.5$ th perc $=0.206,97.5$ perc $=0.327$

Stock status and exploitation in 2014
Biomass $=3843, \mathrm{~B} / \mathrm{Bmsy}=1.66$, fishing mortality $\mathrm{F}=0.0462, \mathrm{~F} / \mathrm{Fmsy}=0.225$
Comment: OK (RF 26.09.2016)

B: Finding viable $r-k$

E: Exploitation rate

Year

C: Analysis of viable r-k

F: Equilibrium curve

Species: Clupea harengus, stock: her-noss
Norwegian spring-spawning herring
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/her-noss.pdf
Region: Northeast Atlantic , Norwegian Sea
Catch data used from years 1988-2014 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.5-0.9 in year 2009 default
Prior final relative biomass $=0.2-0.6$, default
Prior range for $r=0.16-1$ expert, , prior range for $k=1570-40086$
Prior range of $q=1.26-6.39$

Results of CMSY analysis with altogether 10057 viable trajectories for 1431 r-k pairs
$r=0.625,95 \% \mathrm{CL}=0.404-0.968, \mathrm{k}=7052,95 \% \mathrm{CL}=4069-12222$
MSY = 1102, 95\% CL = 883-1375
Relative biomass last year $=0.484 \mathrm{k}, 2.5$ th $=0.226,97.5$ th $=0.596$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.616$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.404,95 \% \mathrm{CL}=0.306-0.532, \mathrm{k}=8974,95 \% \mathrm{CL}=7064-11401$
MSY = 905, 95\% CL = 763-1074
Relative biomass in last year $=0.384 \mathrm{k}, 2.5$ th perc $=0.302$, 97.5 th perc $=0.469$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.664$
$\mathrm{q}=1.68, \mathrm{lc\mid}=1.31, \mathrm{ucl}=2.15$

Results for Management (based on BSM analysis)
Fmsy $=0.202,95 \% C L=0.153-0.266$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.202,95 \% C L=0.153-0.266$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=905,95 \%$ CL $=763-1074$
Bmsy $=4487,95 \% \mathrm{CL}=3532-5700$
Biomass in last year $=3443,2.5$ th perc $=2712,97.5$ perc $=4212$
$\mathrm{B} /$ Bmsy in last year $=0.767,2.5$ th perc $=0.604,97.5$ perc $=0.939$
Fishing mortality in last year $=0.134,2.5$ th perc $=0.11,97.5$ perc $=0.17$
F/Fmsy $=0.664,2.5$ th perc $=0.543,97.5$ perc $=0.843$
Stock status and exploitation in 2014
Biomass $=3443, \mathrm{~B} / \mathrm{Bmsy}=0.767$, fishing mortality $\mathrm{F}=0.134, \mathrm{~F} / \mathrm{Fmsy}=0.664$
Comment: OK (RF 26.09.16)

C: Analysis of viable r-k

Exploitation

E: Exploitation rate

F: Equilibrium curve

Species: Molva molva , stock: lin-arct
Ling in Subareas I and II (Northeast Arctic)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/lin-arct.pdf Region: Northeast Atlantic , Barents Sea
Catch data used from years 1988-2014, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass $=0.2-0.6$ in year 2007 default
Prior final relative biomass $=0.5-0.9$, default
Prior range for $r=0.22-0.66$ expert, , prior range for $k=30.8-555$
Prior range of $q=0.000674-0.00234$

Results of CMSY analysis with altogether 1985 viable trajectories for 1690 r-k pairs
$r=0.469,95 \% C L=0.345-0.637, k=86.7,95 \% C L=58.4-129$
MSY = 10.2, 95\% CL = 7.5-13.8
Relative biomass last year $=0.544 \mathrm{k}, 2.5$ th $=0.503,97.5$ th $=0.694$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.828$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.323,95 \% \mathrm{CL}=0.242-0.432, \mathrm{k}=118,95 \% \mathrm{CL}=86.8-160$
MSY = 9.52, 95\% CL = 7.7-11.8
Relative biomass in last year $=0.668 \mathrm{k}, 2.5$ th perc $=0.489,97.5$ th perc $=0.874$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.756$
$\mathrm{q}=0.00117, \mathrm{lcl}=0.000892$, ucl $=0.00153$
Results for Management (based on BSM analysis)
Fmsy $=0.162,95 \% C L=0.121-0.216$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.162,95 \% C L=0.121-0.216$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 9.52, 95\% CL = 7.7-11.8
Bmsy $=58.9$, $95 \% \mathrm{CL}=43.4-79.8$
Biomass in last year $=78.6,2.5$ th perc $=57.6,97.5$ perc $=103$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=1.34,2.5$ th perc $=0.979,97.5$ perc $=1.75$
Fishing mortality in last year $=0.122,2.5$ th perc $=0.0934,97.5$ perc $=0.167$
F/Fmsy $=0.756,2.5$ th perc $=0.577,97.5$ perc $=1.03$
Stock status and exploitation in 2014
Biomass $=78.6, \mathrm{~B} / \mathrm{Bmsy}=1.34$, fishing mortality $\mathrm{F}=0.122, \mathrm{~F} / \mathrm{Fmsy}=0.756$
Comment: OK (RF 26.09.16)

D: Biomass

Catch lin-arct

Species: Pandalus borealis , stock: pand-barn
Northern shrimp in Subareas I and II (Northeast Arctic)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/pand-barn.pdf Region: Northeast Atlantic , Barents Sea
Catch data used from years 1970-2014 , abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= $0.5-0.9$ in year 2003 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.2-0.8$ default, prior range for $k=149-2382$
Prior range of $q=1.21 \mathrm{e}-05-4.84 \mathrm{e}-05$

Results of CMSY analysis with altogether 93 viable trajectories for 90 r-k pairs
$r=0.256,95 \% \mathrm{CL}=0.236-0.278, \mathrm{k}=780,95 \% \mathrm{CL}=687-885$
MSY = 49.9, 95\% CL = 45.8-54.3
Relative biomass last year $=0.594 \mathrm{k}, 2.5$ th $=0.543,97.5$ th $=0.599$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.341$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.746,95 \% C L=0.537-1.04, k=336,95 \% C L=270-419$
MSY = 62.7, 95\% CL = 51.6-76.3
Relative biomass in last year $=0.55 \mathrm{k}, 2.5$ th perc $=0.467,97.5$ th perc $=0.651$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.241$
$q=7.97 e-06, \mathrm{lcl}=6.53 \mathrm{e}-06, \mathrm{ucl}=9.72 \mathrm{e}-06$

Results for Management (based on BSM analysis)
Fmsy $=0.373,95 \% C L=0.268-0.519$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.373,95 \% C L=0.268-0.519$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 62.7, 95\% CL = 51.6-76.3
Bmsy $=168$, 95\% CL = 135-209
Biomass in last year $=185,2.5$ th perc $=157,97.5$ perc $=219$
$B /$ Bmsy in last year $=1.1,2.5$ th perc $=0.933,97.5$ perc $=1.3$
Fishing mortality in last year $=0.0901,2.5$ th perc $=0.0761,97.5$ perc $=0.106$
F/Fmsy $=0.241,2.5$ th perc $=0.204,97.5$ perc $=0.285$

Stock status and exploitation in 2014
Biomass $=185, \mathrm{~B} / \mathrm{Bmsy}=1.1$, fishing mortality $\mathrm{F}=0.0901$, $\mathrm{F} / \mathrm{Fmsy}=0.241$
Comment: OK (RF 26.09.16)

B: Finding viable r-k

C: Analysis of viable r-k

Catch pand-barn

E: Exploitation rate

F: Equilibrium curve

Species: Pollachius virens, stock: sai-arct
Saithe in Subareas I and II (Northeast Arctic)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sai-arct.pdf Region: Northeast Atlantic , Barents Sea
Catch data used from years 1960-2015, abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass $=0.01-0.4$ in year 1992 expert
Prior final relative biomass $=0.3-0.7$ expert
Prior range for $r=0.21-0.75$ expert, , prior range for $k=329-4699$
Prior range of $q=0.231-0.873$

Results of CMSY analysis with altogether 2096 viable trajectories for 1255 r -k pairs
$r=0.531,95 \% \mathrm{CL}=0.391-0.722, \mathrm{k}=1320,95 \% \mathrm{CL}=948-1838$
MSY = 175, 95\% CL = 162-189
Relative biomass last year $=0.547 \mathrm{k}, 2.5$ th $=0.336,97.5$ th $=0.68$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.688$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.535,95 \% C L=0.411-0.697, k=1698,95 \% C L=1344-2146$
MSY = 227, 95\% CL = 194-267
Relative biomass in last year $=0.608 \mathrm{k}, 2.5$ th perc $=0.531,97.5$ th perc $=0.69$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.477$
$\mathrm{q}=0.348, \mathrm{lcl}=0.28, \mathrm{ucl}=0.433$
Results for Management (based on BSM analysis)
Fmsy $=0.268,95 \% \mathrm{CL}=0.205-0.349$ (if $\mathrm{B}>1 / 2 \mathrm{Bmsy}$ then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.268,95 \% C L=0.205-0.349$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 227, 95\% CL = 194-267
Bmsy $=849$, 95\% CL $=672-1073$
Biomass in last year $=1033,2.5$ th perc $=901,97.5$ perc $=1173$
$\mathrm{B} /$ Bmsy in last year $=1.22,2.5$ th perc $=1.06,97.5$ perc $=1.38$
Fishing mortality in last year $=0.128,2.5$ th perc $=0.112,97.5$ perc $=0.146$
F/Fmsy $=0.477,2.5$ th perc $=0.42,97.5$ perc $=0.546$
Stock status and exploitation in 2014
Biomass $=999, \mathrm{~B} / \mathrm{Bmsy}=1.18$, fishing mortality $\mathrm{F}=0.132$, $\mathrm{F} / \mathrm{Fmsy}=0.494$
Comment: OK (RF 26.09.2016)

D: Biomass

B: Finding viable r-k

C: Analysis of viable r-k

F: Equilibrium curve

Species: Sebastes mentella , stock: smn-arct
Beaked redfish (Sebastes mentella) in Subareas I and II
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2014/2014/smn-arct.pdf
Region: Northeast Atlantic , Barents Sea
Catch data used from years 1992-2013 , abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass $=0.2-0.6$ in year 2000 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.11-0.43$ expert, , prior range for $k=104-2512$
Prior range of $q=3.37-13.5$

Results of CMSY analysis with altogether 21558 viable trajectories for $5908 \mathrm{r}-\mathrm{k}$ pairs
$r=0.3,95 \% \mathrm{CL}=0.216-0.418, \mathrm{k}=471,95 \% \mathrm{CL}=177-1257$
MSY = 35.4, 95\% CL = 9.9-127
Relative biomass last year $=0.789 \mathrm{k}, 2.5$ th $=0.529,97.5$ th $=0.897$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.199$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.502,95 \% \mathrm{CL}=0.406-0.621, \mathrm{k}=246,95 \% \mathrm{CL}=186-326$
MSY = 30.9, 95\% CL = 24.6-38.8
Relative biomass in last year $=0.883 \mathrm{k}, 2.5$ th perc $=0.774$, 97.5 th perc $=0.972$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.17$
$\mathrm{q}=3.86, \mathrm{lc\mid}=2.91, \mathrm{ucl}=5.12$

Results for Management (based on BSM analysis)
Fmsy $=0.251,95 \% C L=0.203-0.311$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.251,95 \% C L=0.203-0.311$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 30.9, 95\% CL = 24.6-38.8
Bmsy $=123,95 \%$ CL $=93.1-163$
Biomass in last year $=218,2.5$ th perc $=191,97.5$ perc $=240$
$\mathrm{B} /$ Bmsy in last year $=1.77,2.5$ th perc $=1.55,97.5$ perc $=1.94$
Fishing mortality in last year $=0.0427,2.5$ th perc $=0.0388,97.5$ perc $=0.0488$
F/Fmsy $=0.17,2.5$ th perc $=0.155,97.5$ perc $=0.194$
Stock status and exploitation in 2014
Biomass $=, \mathrm{B} / \mathrm{Bmsy}=$, fishing mortality $\mathrm{F}=$, $\mathrm{F} / \mathrm{Fmsy}=$
Comment: OK (RF 26.09.16)

D: Biomass

Catch smn-arct

Exploitation

B: Finding viable r-k

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Species: Sebastes norvegicus, stock: smr-arct
Golden redfish (Sebastes norvegicus) in subareas 1 and 2 (Northeast Arctic)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/smr-arct.pdf
Region: Northeast Atlantic , Barents Sea
Catch data used from years 1990-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 1996 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.13-0.48$ expert, , prior range for $k=58.5-864$
Prior range of $q=1.47 e-05-5.63 e-05$

Results of CMSY analysis with altogether 2265 viable trajectories for 1967 r-k pairs
$r=0.331,95 \% C L=0.237-0.463, k=214,95 \% C L=130-353$
MSY = 17.7, 95\% CL = 11.9-26.6
Relative biomass last year $=0.13 \mathrm{k}, 2.5$ th $=0.0158,97.5$ th $=0.294$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.988$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.3,95 \% \mathrm{CL}=0.213-0.421, \mathrm{k}=249,95 \% \mathrm{CL}=187-331$
MSY = 18.6, 95\% CL = 12.8-27.1
Relative biomass in last year $=0.051 \mathrm{k}, 2.5$ th perc $=0.0406,97.5$ th perc $=0.0729$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.91$
$\mathrm{q}=1.96 \mathrm{e}-05, \mathrm{lcl}=1.58 \mathrm{e}-05, \mathrm{ucl}=2.43 \mathrm{e}-05$

Results for Management (based on BSM analysis)
Fmsy $=0.15,95 \% C L=0.107-0.21$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0306,95 \% C L=0.0218-0.0429$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 18.6, 95\% CL = 12.8-27.1
Bmsy $=124,95 \% \mathrm{CL}=93.4-165$
Biomass in last year $=12.7,2.5$ th perc $=10.1,97.5$ perc $=18.1$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.102,2.5$ th perc $=0.0812,97.5$ perc $=0.146$
Fishing mortality in last year $=0.286,2.5$ th perc $=0.2,97.5$ perc $=0.36$
F/Fmsy $=9.37,2.5$ th $\operatorname{perc}=6.55,97.5$ perc $=11.8$

Stock status and exploitation in 2014
Biomass $=16.2, \mathrm{~B} / \mathrm{Bmsy}=0.13$, fishing mortality $\mathrm{F}=0.274, \mathrm{~F} / \mathrm{Fmsy}=7.02$
Comment: OK (RF 26.09.16)

E: Exploitation rate

Year

Catch smr-arct

Exploitation

Species: Brosme brosme , stock: usk-arct
Tusk in Subareas I and II (Northeast Arctic)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/usk-arct.pdf
Region: Northeast Atlantic , Barents Sea
Catch data used from years 1988-2014, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass $=0.01-0.4$ in year 2003 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.21-0.62$ expert, , prior range for $k=30.3-357$
Prior range of $q=0.00169-0.0058$

Results of CMSY analysis with altogether 2198 viable trajectories for 1157 r-k pairs
$r=0.461,95 \% C L=0.349-0.608, k=126,95 \% C L=87.3-181$
MSY = 14.5, 95\% CL = 11.5-18.3
Relative biomass last year $=0.518 \mathrm{k}, 2.5$ th $=0.264,97.5$ th $=0.597$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.616$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.551,95 \% C L=0.43-0.708, k=101,95 \% C L=78.4-131$
MSY = $14,95 \%$ CL = 12.5-15.6
Relative biomass in last year $=0.506 \mathrm{k}, 2.5$ th perc $=0.404$, 97.5 th perc $=0.637$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.618$
$\mathrm{q}=0.00219, \mathrm{lcl}=0.00175, \mathrm{ucl}=0.00274$

Results for Management (based on BSM analysis)
Fmsy $=0.276,95 \% C L=0.215-0.354$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.276,95 \% C L=0.215-0.354$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=14,95 \% \mathrm{CL}=12.5-15.6$
Bmsy $=50.6,95 \% \mathrm{CL}=39.2-65.4$
Biomass in last year $=51.2,2.5$ th perc $=40.9,97.5$ perc $=64.5$
$B /$ Bmsy in last year $=1.01,2.5$ th perc $=0.809,97.5$ perc $=1.27$
Fishing mortality in last year $=0.171,2.5$ th perc $=0.135,97.5$ perc $=0.213$
F/Fmsy $=0.618,2.5$ th perc $=0.491,97.5$ perc $=0.774$
Stock status and exploitation in 2014
Biomass $=51.2, \mathrm{~B} / \mathrm{Bmsy}=1.01$, fishing mortality $\mathrm{F}=0.171, \mathrm{~F} / \mathrm{Fmsy}=0.618$
Comment: OK (RF 26.09.16)

D: Biomass

Iceland, Faroes and Greenland (analyzed with CMSY_O_7m.R)
Species: Argentina silus, stock: arg-5b6a
Greater silver smelt in Divisions Vb and VIa (Faroes grounds, West of Scotland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/arg-5b6a.pdf
Region: Northeast Atlantic, Faroes
Catch data used from years 1988-2014 , abundance $=$ CPUE
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass= $0.01-0.3$ in year 2002 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.12-0.68$ expert, , prior range for $k=32.1-694$
Prior range of $q=0.000254-0.00118$

Results of CMSY analysis with altogether 1827 viable trajectories for $1806 \mathrm{r}-\mathrm{k}$ pairs
$r=0.383,95 \% C L=0.247-0.594, k=222,95 \% C L=147-334$
MSY = 21.2 , 95\% CL = 19-23.8
Relative biomass last year $=0.262 \mathrm{k}, 2.5$ th $=0.0341,97.5$ th $=0.392$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.41$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.325,95 \% C L=0.21-0.502, k=195,95 \% C L=130-291$
MSY = 15.8, 95\% CL = 12.9-19.3
Relative biomass in last year $=0.232 \mathrm{k}, 2.5$ th perc $=0.13,97.5$ th perc $=0.368$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.14$
$\mathrm{q}=0.000453, \mathrm{lcl}=0.000339, \mathrm{ucl}=0.000606$

Results for Management (based on BSM analysis)
Fmsy $=0.162,95 \% C L=0.105-0.251$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.151,95 \% C L=0.0973-0.233$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 15.8, 95\% CL = 12.9-19.3
Bmsy $=97.3$, 95\% CL = 65-146
Biomass in last year $=45.1,2.5$ th perc $=25.3,97.5$ perc $=71.6$
$B / B m s y$ in last year $=0.464,2.5$ th perc $=0.26,97.5$ perc $=0.736$
Fishing mortality in last year $=0.347,2.5$ th perc $=0.218,97.5$ perc $=0.619$
F/Fmsy $=2.3,2.5$ th perc $=1.45,97.5$ perc $=4.11$

Stock status and exploitation in 2014
Biomass $=45.1$, $B / B m s y=0.464$, fishing mortality $F=0.347, F / F m s y=2.3$
Comment: OK (RF 27.9.16)

E: Exploitation rate

Species: Argentina silus , stock: arg-icel
Greater silver smelt in Subarea 14 and Division 5.a (East Greenland and Iceland grounds)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/arg-icel.pdf
Region: Northeast Atlantic , Greenland Sea
Catch data used from years 1988-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2007 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.12-0.68$ expert, , prior range for $k=18.7-403$
Prior range of $q=1.07-4.99$

Results of CMSY analysis with altogether 2927 viable trajectories for 2927 r-k pairs
$r=0.447,95 \%$ CL $=0.301-0.663, k=185,95 \% C L=66.1-517$
MSY $=20.7,95 \%$ CL $=6.2-68.8$
Relative biomass last year $=0.43 \mathrm{k}, 2.5 \mathrm{th}=0.217,97.5 \mathrm{th}=0.592$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.384$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.541,95 \% \mathrm{CL}=0.394-0.743, \mathrm{k}=81.1,95 \% \mathrm{CL}=54.1-122$
MSY = 11, 95\% CL = 7.71-15.6
Relative biomass in last year $=0.394 \mathrm{k}, 2.5$ th perc $=0.25,97.5$ th perc $=0.561$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.701$
$\mathrm{q}=1.48, \mathrm{lc\mid}=1.08, \mathrm{ucl}=2.03$
Results for Management (based on BSM analysis)
Fmsy $=0.271,95 \% \mathrm{CL}=0.197-0.371$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.271,95 \% C L=0.197-0.371$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 11, 95\% CL = 7.71-15.6
Bmsy $=40.6$, 95% CL $=27-60.8$
Biomass in last year $=31.9,2.5$ th perc $=20.3,97.5$ perc $=45.5$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.788,2.5$ th perc $=0.501,97.5$ perc $=1.12$
Fishing mortality in last year $=0.19,2.5$ th perc $=0.133,97.5$ perc $=0.298$
F/Fmsy $=0.701,2.5$ th perc $=0.492,97.5$ perc $=1.1$
Stock status and exploitation in 2014
Biomass $=29.9, \mathrm{~B} / \mathrm{Bmsy}=0.737$, fishing mortality $\mathrm{F}=0.242, \mathrm{~F} / \mathrm{Fmsy}=0.895$
Comment: OK (RF 27.09.16)

D: Biomass

Year

Catch arg-icel

E: Exploitation rate

Year

F: Equilibrium curve

Exploitation

Species: Molva dypterygia, stock: bli-5a14
Blue ling in Subarea 14 and Division 5.a (East Greenland and Iceland grounds)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/bli-5a14.pdf
Region: Northeast Atlantic , Greenland Sea
Catch data used from years 1973-2015, abundance $=$ CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass $=0.01-0.4$ in year 2004 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.19-0.48$ expert, , prior range for $k=18.6-185$
Prior range of $q=0.0796-0.251$

Results of CMSY analysis with altogether 2569 viable trajectories for 2040 r-k pairs
$r=0.34,95 \% C L=0.254-0.453, k=44.5,95 \% C L=33.4-59.3$
MSY $=3.78,95 \% \mathrm{CL}=3.04-4.7$
Relative biomass last year $=0.295 \mathrm{k}, 2.5 \mathrm{th}=0.0354,97.5$ th $=0.396$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.01$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.395,95 \% \mathrm{CL}=0.314-0.498$, $\mathrm{k}=41.5,95 \% \mathrm{CL}=33.5-51.3$
MSY $=4.1,95 \%$ CL $=3.52-4.76$
Relative biomass in last year $=0.312 \mathrm{k}, 2.5$ th perc $=0.218,97.5$ th perc $=0.414$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.709$
$\mathrm{q}=0.102, \mathrm{lc\mid}=0.081$, ucl $=0.128$
Results for Management (based on BSM analysis)
Fmsy $=0.198,95 \% \mathrm{CL}=0.157-0.249$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.198,95 \% C L=0.157-0.249$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=4.1,95 \% C L=3.52-4.76$
Bmsy $=20.7$, 95\% CL $=16.8-25.6$
Biomass in last year $=12.9,2.5$ th perc $=9.04,97.5$ perc $=17.2$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.624,2.5$ th perc $=0.436,97.5$ perc $=0.828$
Fishing mortality in last year $=0.14,2.5$ th perc $=0.106,97.5$ perc $=0.201$
F/Fmsy $=0.709,2.5$ th perc $=0.535,97.5$ perc $=1.02$
Stock status and exploitation in 2014
Biomass $=12.9, \mathrm{~B} / \mathrm{Bmsy}=0.624$, fishing mortality $\mathrm{F}=0.131, \mathrm{~F} / \mathrm{Fmsy}=0.662$
Comment: OK (RF 27.09.16)

E: Exploitation rate

Exploitation

Species: Mallotus villosus , stock: cap-icel
Capelin in Subareas V and XIV and Division Ila west of $5^{\circ} \mathrm{W}$ (Iceland and Faroes grounds, East Greenland, Jan Mayen area)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/cap-icel.pdf
Region: Northeast Atlantic , Iceland Sea
Catch data used from years 1979-2016, abundance $=$ CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass $=0.01-0.4$ in year 1990 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.17-1.1$ expert, , prior range for $k=1.18-30.7$
Prior range of $q=0.222-1.13$

Results of CMSY analysis with altogether 2041 viable trajectories for 1817 r-k pairs
$r=0.389,95 \% C L=0.249-0.607, k=10.4,95 \% C L=7.23-14.8$
MSY = 1.01, 95\% CL = 0.83-1.22
Relative biomass last year $=0.201 \mathrm{k}, 2.5$ th $=0.0143,97.5$ th $=0.394$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.687$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.713,95 \% \mathrm{CL}=0.496-1.02, \mathrm{k}=5.91,95 \% \mathrm{CL}=3.81-9.17$
MSY = 1.05, 95\% CL = 0.827-1.34
Relative biomass in last year $=0.357 \mathrm{k}, 2.5$ th perc $=0.151,97.5$ th perc $=0.487$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.231$
$\mathrm{q}=0.235, \mathrm{lcl}=0.16, \mathrm{ucl}=0.344$

Results for Management (based on BSM analysis)
Fmsy $=0.357,95 \% \mathrm{CL}=0.248-0.512$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.357,95 \% C L=0.248-0.512$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=1.05,95 \% \mathrm{CL}=0.827-1.34$
Bmsy = 2.95, 95\% CL = 1.9-4.59
Biomass in last year $=2.11,2.5$ th perc $=0.89,97.5$ perc $=2.88$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.715,2.5$ th perc $=0.301,97.5$ perc $=0.974$
Fishing mortality in last year $=0.0824,2.5$ th perc $=0.0605,97.5$ perc $=0.195$
$\mathrm{F} / \mathrm{Fmsy}=0.231,2.5$ th perc $=0.17,97.5$ perc $=0.548$

Stock status and exploitation in 2014
Biomass $=1.53, \mathrm{~B} / \mathrm{Bmsy}=0.519$, fishing mortality $\mathrm{F}=0.0925, \mathrm{~F} / \mathrm{Fmsy}=0.26$
Comment: OK (RF 27.09.16)

E: Exploitation rate

Species: Gadus morhua , stock: cod-farb
Cod in Subdivision Vb2 (Faroe Bank)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/cod-farb.pdf
Region: Northeast Atlantic , Faroes
Catch data used from years 1990-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2002 expert
Prior final relative biomass $=0.01-0.2$ expert
Prior range for $r=0.23-0.96$ expert, , prior range for $k=3.76-62.9$
Prior range of $q=0.0353-0.144$

Results of CMSY analysis with altogether 2321 viable trajectories for 2227 r-k pairs
$r=0.525,95 \% C L=0.297-0.925, k=24.4,95 \% C L=11.9-50$
MSY = 3.2, 95\% CL = 1.3-7.85
Relative biomass last year $=0.0739 \mathrm{k}, 2.5$ th $=0.0122,97.5$ th $=0.191$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.0656$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.569,95 \% \mathrm{CL}=0.409-0.792, \mathrm{k}=14.4,95 \% \mathrm{CL}=10.5-19.8$
$\mathrm{MSY}=2.06,95 \% \mathrm{CL}=1.67-2.52$
Relative biomass in last year $=0.0484 \mathrm{k}, 2.5$ th perc $=0.0217,97.5$ th perc $=0.104$
Exploitation $F /(r / 2)$ in last year $=0.0854$
$\mathrm{q}=0.0419, \mathrm{lcl}=0.0318, \mathrm{ucl}=0.0552$
Results for Management (based on BSM analysis)
Fmsy $=0.285,95 \% \mathrm{CL}=0.205-0.396$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.0551,95 \% C L=0.0396-0.0767$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=2.06,95 \% \mathrm{CL}=1.67-2.52$
Bmsy $=7.22$, $95 \% \mathrm{CL}=5.26-9.92$
Biomass in last year $=0.699,2.5$ th perc $=0.314,97.5$ perc $=1.5$
$\mathrm{B} /$ Bmsy in last year $=0.0968,2.5$ th perc $=0.0435,97.5$ perc $=0.207$
Fishing mortality in last year $=0.0243,2.5$ th perc $=0.0113,97.5$ perc $=0.0541$
F/Fmsy $=0.441,2.5$ th perc $=0.206,97.5$ perc $=0.982$
Stock status and exploitation in 2014
Biomass $=0.689, B / B m s y=0.0954$, fishing mortality $F=0.0552, F / F m s y=1.02$
Comment: OK (RF 27.9.16) Abundance in Summer Survey read off graph.

D: Biomass

Exploitation

E: Exploitation rate

F: Equilibrium curve

Species: Gadus morhua , stock: cod-farp
Cod in Subdivision Vb1 (Faroe Plateau)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/cod-farp.pdf
Region: Northeast Atlantic , Faroes
Catch data used from years 1961-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= $0.01-0.4$ in year 1992 default
Prior final relative biomass $=0.01-0.4$, default
Prior range for $r=0.23-0.96$ expert, , prior range for $k=39.8-664$
Prior range of $q=0.55-2.25$

Results of CMSY analysis with altogether 647 viable trajectories for $596 \mathrm{r}-\mathrm{k}$ pairs
$r=0.449,95 \% C L=0.363-0.556, k=225,95 \% C L=173-293$
MSY = 25.3, 95\% CL = 23-27.8
Relative biomass last year $=0.179 \mathrm{k}, 2.5$ th $=0.0152,97.5$ th $=0.392$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.647$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.727,95 \% \mathrm{CL}=0.582-0.909, \mathrm{k}=144,95 \% \mathrm{CL}=118-176$
$\mathrm{MSY}=26.1,95 \% \mathrm{CL}=23.3-29.4$
Relative biomass in last year $=0.16 \mathrm{k}$, 2.5th perc $=0.137,97.5$ th perc $=0.188$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.883$
$\mathrm{q}=0.873, \mathrm{lcl}=0.723, \mathrm{ucl}=1.05$
Results for Management (based on BSM analysis)
Fmsy $=0.364,95 \% C L=0.291-0.454$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.233,95 \% C L=0.186-0.291$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=26.1,95 \%$ CL $=23.3-29.4$
Bmsy $=71.9$, 95\% CL $=59-87.8$
Biomass in last year $=23,2.5$ th perc $=19.7,97.5$ perc $=27$
B/Bmsy in last year $=0.32,2.5$ th perc $=0.273,97.5$ perc $=0.375$
Fishing mortality in last year $=0.321,2.5$ th perc $=0.274,97.5$ perc $=0.376$
F/Fmsy $=1.38,2.5$ th perc $=1.18,97.5$ perc $=1.62$
Stock status and exploitation in 2014
Biomass $=22.4, \mathrm{~B} / \mathrm{Bmsy}=0.311$, fishing mortality $\mathrm{F}=0.256, \mathrm{~F} / \mathrm{Fmsy}=1.13$
Comment: OK (RF 27.9.16)

B: Finding viable r-k

E: Exploitation rate

Year

C: Analysis of viable r-k

F: Equilibrium curve

Species: Gadus morhua , stock: cod-iceg
Cod in Division Va (Icelandic cod)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/cod-iceg.pdf
Region: Northeast Atlantic , Iceland Sea
Catch data used from years 1955-2015, abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ default
Prior intermediate rel. biomass $=0.01-0.4$ in year 2009 default
Prior final relative biomass $=0.2-0.6$, default
Prior range for $r=0.23-0.96$ expert, , prior range for $k=568-9483$
Prior range of $q=0.501-2.05$
Results of CMSY analysis with altogether 331 viable trajectories for 312 r-k pairs
$r=0.333,95 \% \mathrm{CL}=0.296-0.375, \mathrm{k}=4336,95 \% \mathrm{CL}=3685-5103$
MSY $=361,95 \%$ CL = 331-393
Relative biomass last year $=0.531 \mathrm{k}, 2.5$ th $=0.246,97.5$ th $=0.595$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.588$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.718,95 \% \mathrm{CL}=0.564-0.915, \mathrm{k}=2592,95 \% \mathrm{CL}=1974-3404$
MSY $=466,95 \%$ CL $=382-568$
Relative biomass in last year $=0.613 \mathrm{k}, 2.5$ th perc $=0.506,97.5$ th perc $=0.716$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.403$
$\mathrm{q}=0.32, \mathrm{lcl}=0.256, \mathrm{ucl}=0.4$
Results for Management (based on BSM analysis)
Fmsy $=0.359,95 \% \mathrm{CL}=0.282-0.458$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.359,95 \% C L=0.282-0.458$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=466,95 \% C L=382-568$
Bmsy $=1296,95 \% \mathrm{CL}=987-1702$
Biomass in last year $=1589,2.5$ th perc $=1311,97.5$ perc $=1855$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=1.23,2.5$ th perc $=1.01,97.5$ perc $=1.43$
Fishing mortality in last year $=0.145,2.5$ th perc $=0.124,97.5$ perc $=0.176$
F/Fmsy $=0.403,2.5$ th perc $=0.346,97.5$ perc $=0.489$
Stock status and exploitation in 2014
Biomass $=1383, \mathrm{~B} / \mathrm{Bmsy}=1.07$, fishing mortality $\mathrm{F}=0.16, \mathrm{~F} / \mathrm{Fmsy}=0.447$
Comment: OK (RF 27.09.16)

B: Finding viable r-k

D: Biomass

Year

E: Exploitation rate

C: Analysis of viable r-k

Species: Gadus morhua , stock: cod-ingr
Cod in in NAFO Subarea 1, inshore (West Greenland cod)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/cod-ingr.pdf
Region: Northeast Atlantic , Greenland Sea
Catch data used from years 1980-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass $=0.01-0.3$ in year 1999 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.23-0.96$ expert, , prior range for $k=40.8-681$
Prior range of $q=0.00671-0.0274$

Results of CMSY analysis with altogether 485 viable trajectories for 482 r -k pairs
$r=0.445,95 \% \mathrm{CL}=0.297-0.667$, $\mathrm{k}=440$, $95 \% \mathrm{CL}=265-731$
$\mathrm{MSY}=48.9,95 \% \mathrm{CL}=27.3-87.8$
Relative biomass last year $=0.155 \mathrm{k}, 2.5$ th $=0.0168,97.5$ th $=0.389$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.25$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.779,95 \% C L=0.585-1.04, k=177,95 \% C L=130-240$
MSY = 34.4, 95\% CL = 22.9-51.6
Relative biomass in last year $=0.343 \mathrm{k}, 2.5$ th perc $=0.139,97.5$ th perc $=0.479$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.07$
$q=0.00725, \mathrm{lc\mid}=0.00532, \mathrm{ucl}=0.00988$

Results for Management (based on BSM analysis)
Fmsy $=0.389,95 \% \mathrm{CL}=0.292-0.519$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.389,95 \% C L=0.292-0.519$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 34.4, 95\% CL = 22.9-51.6
Bmsy $=88.3,95 \%$ CL $=64.9-120$
Biomass in last year $=60.6,2.5$ th perc $=24.5,97.5$ perc $=84.6$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.686,2.5$ th perc $=0.277,97.5$ perc $=0.958$
Fishing mortality in last year $=0.417,2.5$ th perc $=0.299,97.5$ perc $=1.03$
F/Fmsy $=1.07,2.5$ th perc $=0.767,97.5$ perc $=2.65$
Stock status and exploitation in 2014
Biomass $=47.9, \mathrm{~B} /$ Bmsy $=0.542$, fishing mortality $\mathrm{F}=0.383, \mathrm{~F} / \mathrm{Fmsy}=0.983$
Comment: OK (RF 27.09.16)

D: Biomass

Species: Gadus morhua , stock: cod-segr
Cod in ICES Subarea XIV and NAFO Subdivision 1F (East Greenland, South Greenland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/cod-segr.pdf
Region: Northeast Atlantic, Greenland Sea
Catch data used from years 1960-2015, abundance $=$ CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass $=0.01-0.3$ in year 1993 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.23-0.96$ expert, , prior range for $k=50-834$
Prior range of $q=4.65-19$

Results of CMSY analysis with altogether 60 viable trajectories for $60 \mathrm{r}-\mathrm{k}$ pairs
$r=0.321,95 \% C L=0.262-0.392$, $k=489,95 \% C L=372-643$
$\mathrm{MSY}=39.2,95 \% \mathrm{CL}=28.3-54.3$
Relative biomass last year $=0.0912 \mathrm{k}, 2.5 \mathrm{th}=0.0177,97.5 \mathrm{th}=0.35$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.36$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.442,95 \% \mathrm{CL}=0.242-0.805, \mathrm{k}=333,95 \% \mathrm{CL}=177-628$
MSY = 36.8, 95\% CL = 25.9-52.1
Relative biomass in last year $=0.0591 \mathrm{k}, 2.5$ th perc $=0.0236,97.5$ th perc $=0.183$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=3.62$
$q=6.36, \mathrm{lcl}=4.19, u c l=9.67$
Results for Management (based on BSM analysis)
Fmsy $=0.221,95 \% C L=0.121-0.402$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0522,95 \% C L=0.0287-0.0951$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 36.8, 95\% CL = 25.9-52.1
Bmsy $=167$, 95\% CL $=88.4-314$
Biomass in last year $=19.7,2.5$ th perc $=7.88,97.5$ perc $=61.1$
$B /$ Bmsy in last year $=0.118,2.5$ th perc $=0.0473,97.5$ perc $=0.367$
Fishing mortality in last year $=0.8,2.5$ th perc $=0.258,97.5$ perc $=2$
F/Fmsy $=15.3,2.5$ th perc $=4.94,97.5$ perc $=38.3$
Stock status and exploitation in 2014
Biomass $=23.1, \mathrm{~B} / \mathrm{Bmsy}=0.139$, fishing mortality $\mathrm{F}=0.342, \mathrm{~F} / \mathrm{Fmsy}=5.59$
Comment: OK (RF 27.09.16)

B: Finding viable r-k

E: Exploitation rate

Year

Species: Gadus morhua , stock: cod-wgr
Cod in in NAFO Subdivisions 1A-E, offshore (West Greenland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/cod-wgr.pdf
Region: Northeast Atlantic , Greenland Sea
Catch data used from years 1962-2015, abundance $=$ None
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 1970 expert
Prior final relative biomass $=0.01-0.2$ expert
Prior range for $r=0.23-0.96$ expert, , prior range for $k=417-6969$
Results of CMSY analysis with altogether 761 viable trajectories for $753 \mathrm{r}-\mathrm{k}$ pairs
$r=0.465,95 \% C L=0.334-0.648, k=3637,95 \% C L=2071-6389$
MSY $=423,95 \%$ CL = 217-824
Relative biomass last year $=0.0483 k$, 2.5th $=0.0165,97.5$ th $=0.179$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.0445$

Results for Management (based on CMSY analysis)
Fmsy $=0.233,95 \%$ CL $=0.167-0.324$ (if B > 1/2 Bmsy then Fmsy $=0.5$ r)
Fmsy $=0.0449,95 \% C L=0.0322-0.0626$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 423, 95\% CL = 217-824
Bmsy $=1819$, 95\% CL = 1035-3194
Biomass in last year $=176,2.5$ th perc $=60,97.5$ perc $=649$
$B /$ Bmsy in last year $=0.0965,2.5$ th perc $=0.033,97.5$ perc $=0.357$
Fishing mortality in last year $=0.0277,2.5$ th perc $=0.00749,97.5$ perc $=0.0811$
F/Fmsy $=0.617,2.5$ th perc $=0.167,97.5$ perc $=1.81$
Stock status and exploitation in 2014
Biomass $=165, ~ B / B m s y=0.0906$, fishing mortality $F=0.000704, ~ F / F m s y=0.0167$
Comment: OK (RF 27.09.16)

D: Biomass

F: Equilibrium curve

Biomass

Species: Reinhardtius hippoglossoides, stock: ghl-grn
Greenland halibut in Subareas V, VI, XII, and XIV (Iceland and Faroes grounds, West of Scotland, North of Azores, East of Greenland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/ghl-grn.pdf
Region: Northeast Atlantic , Iceland Sea
Catch data used from years 1960-2015, abundance $=$ CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass $=0.01-0.4$ in year 1996 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.16-0.68$ expert, , prior range for $k=78-1326$
Prior range of $q=4.21 e-06-1.74 e-05$

Results of CMSY analysis with altogether 3138 viable trajectories for 968 r-k pairs
$r=0.445,95 \% C L=0.302-0.654, k=284,95 \% C L=196-410$
MSY = 31.5, 95\% CL = 28.8-34.6
Relative biomass last year $=0.306 \mathrm{k}$, 2.5th $=0.0384,97.5$ th $=0.396$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.27$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.371,95 \% C L=0.269-0.51, k=361,95 \% C L=274-476$
MSY = 33.5, 95\% CL = 28.9-38.8
Relative biomass in last year $=0.329 \mathrm{k}, 2.5$ th perc $=0.29,97.5$ th perc $=0.366$
Exploitation $F /(r / 2)$ in last year $=1.16$
$\mathrm{q}=6.01 \mathrm{e}-06, \mathrm{lc\mid}=4.65 \mathrm{e}-06, \mathrm{ucl}=7.77 \mathrm{e}-06$
Results for Management (based on BSM analysis)
Fmsy $=0.185,95 \%$ CL $=0.135-0.255$ (if B > 1/2 Bmsy then Fmsy $=0.5$ r)
Fmsy $=0.185,95 \% C L=0.135-0.255$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 33.5, 95\% CL = 28.9-38.8
Bmsy $=181,95 \%$ CL = 137-238
Biomass in last year $=119,2.5$ th perc $=105,97.5$ perc $=132$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.659,2.5$ th perc $=0.581,97.5$ perc $=0.731$
Fishing mortality in last year $=0.216,2.5$ th perc $=0.194,97.5$ perc $=0.245$
F/Fmsy $=1.16,2.5$ th perc $=1.05,97.5$ perc $=1.32$

Stock status and exploitation in 2014
Biomass $=115, \mathrm{~B} / \mathrm{Bmsy}=0.638$, fishing mortality $\mathrm{F}=0.183, \mathrm{~F} / \mathrm{Fmsy}=0.986$
Comment: OK (RF 27.09.16)

B: Finding viable r-k

C: Analysis of viable r-k

D: Biomass

Year

Catch ghl-grn

Exploitation

E: Exploitation rate

Year

F: Equilibrium curve

Species: Melanogrammus aeglefinus, stock: had-faro
Haddock in Division Vb
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/had-faro.pdf
Region: Northeast Atlantic , Faroes
Catch data used from years 1957-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2000 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.23-1$ expert, , prior range for $k=25.2-438$
Prior range of $q=0.897-3.74$

Results of CMSY analysis with altogether 93 viable trajectories for 90 r-k pairs
$r=0.346,95 \% \mathrm{CL}=0.274-0.435, \mathrm{k}=209,95 \% \mathrm{CL}=169-258$
MSY = 18, 95\% CL = 15.4-21.2
Relative biomass last year $=0.271 \mathrm{k}, 2.5 \mathrm{th}=0.0444,97.5 \mathrm{th}=0.389$
Exploitation $F /(r / 2)$ in last year $=0.328$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.655,95 \% \mathrm{CL}=0.481-0.893, \mathrm{k}=113,95 \% \mathrm{CL}=83.4-152$
MSY = 18.5, 95\% CL = 15.6-21.9
Relative biomass in last year $=0.131 \mathrm{k}, 2.5$ th perc $=0.103,97.5$ th perc $=0.161$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.703$
$\mathrm{q}=1.18, \mathrm{lc\mid}=0.916, \mathrm{ucl}=1.51$
Results for Management (based on BSM analysis)
Fmsy $=0.328,95 \% C L=0.241-0.446$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.172,95 \% C L=0.126-0.234$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 18.5, 95\% CL = 15.6-21.9
Bmsy $=56.3,95 \% \mathrm{CL}=41.7-76.1$
Biomass in last year $=14.7,2.5$ th perc $=11.6,97.5$ perc $=18.1$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.262,2.5$ th perc $=0.206,97.5$ perc $=0.321$
Fishing mortality in last year $=0.23,2.5$ th perc $=0.188,97.5$ perc $=0.293$
F/Fmsy $=1.34,2.5$ th perc $=1.09,97.5$ perc $=1.71$
Stock status and exploitation in 2014
Biomass $=12.3, \mathrm{~B} / \mathrm{Bmsy}=0.218$, fishing mortality $\mathrm{F}=0.266, \mathrm{~F} / \mathrm{Fmsy}=1.86$
Comment: OK (RF 27.9.16)

Species: Melanogrammus aeglefinus, stock: had-iceg
Haddock in Division Va (Icelandic haddock)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/had-iceg.pdf
Region: Northeast Atlantic , Iceland Sea
Catch data used from years 1979-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.5-0.9 in year 2006 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.23-1$ expert, , prior range for $k=103-1800$
Prior range of $q=0.417-1.74$

Results of CMSY analysis with altogether 2288 viable trajectories for $1231 r$-k pairs
$r=0.687,95 \% \mathrm{CL}=0.486-0.972$, $\mathrm{k}=405,95 \% \mathrm{CL}=266-618$
$\mathrm{MSY}=69.7,95 \% \mathrm{CL}=60.1-80.7$
Relative biomass last year $=0.292 \mathrm{k}, 2.5 \mathrm{th}=0.0208,97.5 \mathrm{th}=0.395$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.962$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.684,95 \% \mathrm{CL}=0.511-0.916, \mathrm{k}=381,95 \% \mathrm{CL}=287-506$
MSY = 65.2, 95\% CL = 56-76
Relative biomass in last year $=0.366 \mathrm{k}, 2.5$ th perc $=0.296,97.5$ th perc $=0.434$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.829$
$\mathrm{q}=0.633, \mathrm{lc\mid}=0.492, \mathrm{ucl}=0.815$
Results for Management (based on BSM analysis)
Fmsy $=0.342,95 \% C L=0.256-0.458$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.342,95 \% C L=0.256-0.458$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 65.2, 95\% CL=56-76
Bmsy $=191,95 \%$ CL $=144-253$
Biomass in last year $=140,2.5$ th perc $=113,97.5$ perc $=166$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.733,2.5$ th perc $=0.591,97.5$ perc $=0.869$
Fishing mortality in last year $=0.284,2.5$ th perc $=0.239,97.5$ perc $=0.352$
F/Fmsy $=0.829,2.5$ th perc $=0.699,97.5$ perc $=1.03$
Stock status and exploitation in 2014
Biomass $=128, \mathrm{~B} / \mathrm{Bmsy}=0.67$, fishing mortality $\mathrm{F}=0.265, \mathrm{~F} / \mathrm{Fmsy}=0.776$
Comment: OK (RF 27.09.16)

Year

D: Biomass

Year

Catch had-iceg

Exploitation

E: Exploitation rate

Year

Species: Clupea harengus, stock: her-vasu
Herring in Division Va (Iceland grounds) (summer-spawning herring)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/her-vasu.pdf
Region: Northeast Atlantic , Iceland Sea
Catch data used from years 1987-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass $=0.5-0.9$ in year 2007 expert
Prior final relative biomass $=0.1-0.5$ expert
Prior range for $r=0.16-1$ expert, , prior range for $k=147-3748$
Prior range of $q=0.665-3.36$
Results of CMSY analysis with altogether 1177 viable trajectories for 1021 r-k pairs
$r=0.765,95 \% \mathrm{CL}=0.596-0.982, \mathrm{k}=560,95 \% \mathrm{CL}=407-770$
MSY = 107, 95\% CL = 93.6-123
Relative biomass last year $=0.415 \mathrm{k}, 2.5$ th $=0.139,97.5$ th $=0.496$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.886$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.485,95 \%$ CL $=0.331-0.711, k=895,95 \% C L=609-1317$
MSY = 109, 95\% CL = 87.2-135
Relative biomass in last year $=0.347 \mathrm{k}$, 2.5 th perc $=0.265,97.5$ th perc $=0.443$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.924$
$q=1.16,|c|=0.862, u c l=1.56$
Results for Management (based on BSM analysis)
Fmsy $=0.243,95 \% \mathrm{CL}=0.166-0.355$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.243,95 \% C L=0.166-0.355$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=109,95 \%$ CL $=87.2-135$
Bmsy $=448, ~ 95 \% C L=304-658$
Biomass in last year $=311,2.5$ th perc $=237,97.5$ perc $=396$
$\mathrm{B} /$ Bmsy in last year $=0.694,2.5$ th perc $=0.529,97.5$ perc $=0.886$
Fishing mortality in last year $=0.224,2.5$ th perc $=0.176,97.5$ perc $=0.294$
F/Fmsy $=0.924,2.5$ th perc $=0.725,97.5$ perc $=1.21$
Stock status and exploitation in 2014
Biomass $=358, \mathrm{~B} / \mathrm{Bmsy}=0.8$, fishing mortality $\mathrm{F}=0.265, \mathrm{~F} / \mathrm{Fmsy}=1.09$
Comment: OK (RF 27.09.16)

D: Biomass

Catch her-vasu

Species: Molva molva , stock: lin-faro
Ling in Division Vb (Faroes Grounds)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/lin-faro.pdf
Region: Northeast Atlantic , Faroes
Catch data used from years 1988-2014 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.2-0.6 in year 2004 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.22-0.66$ expert, , prior range for $k=17.5-315$
Prior range of $q=2 e-04-0.000694$

Results of CMSY analysis with altogether 3746 viable trajectories for 1950 r-k pairs
$r=0.502,95 \% \mathrm{CL}=0.386-0.651, \mathrm{k}=46.8,95 \% \mathrm{CL}=30.1-72.7$
$\mathrm{MSY}=5.87,95 \% \mathrm{CL}=4.13-8.34$
Relative biomass last year $=0.568 \mathrm{k}, 2.5$ th $=0.503,97.5$ th $=0.749$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.842$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.346,95 \% \mathrm{CL}=0.252-0.475, \mathrm{k}=70.4,95 \% \mathrm{CL}=49.6-100$
MSY $=6.1,95 \%$ CL $=4.77-7.79$
Relative biomass in last year $=0.713 \mathrm{k}, 2.5$ th perc $=0.514,97.5$ th perc $=0.943$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.769$
$q=0.000354, \mathrm{lc\mid}=0.00027$, ucl $=0.000465$

Results for Management (based on BSM analysis)
Fmsy $=0.173,95 \% \mathrm{CL}=0.126-0.238$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.173,95 \% C L=0.126-0.238$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 6.1, 95\% CL = 4.77-7.79
Bmsy $=35.2$, 95% CL $=24.8-50$
Biomass in last year $=50.2$, 2.5th perc $=36.2,97.5$ perc $=66.4$
$B /$ Bmsy in last year $=1.43,2.5$ th perc $=1.03,97.5$ perc $=1.89$
Fishing mortality in last year $=0.133,2.5$ th perc $=0.101,97.5$ perc $=0.185$
F/Fmsy $=0.769,2.5$ th perc $=0.581,97.5$ perc $=1.07$

Stock status and exploitation in 2014
Biomass $=50.2, \mathrm{~B} /$ Bmsy $=1.43$, fishing mortality $\mathrm{F}=0.133, \mathrm{~F} / \mathrm{Fmsy}=0.769$
Comment: OK (RF 27.9.16)

D: Biomass

E: Exploitation rate

Species: Molva molva , stock: lin-icel
Ling in Division 5.a (Iceland grounds)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/lin-icel.pdf
Region: Northeast Atlantic , Iceland Sea
Catch data used from years 1982-2015, abundance $=$ CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass $=0.01-0.4$ in year 2005 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.22-0.66$ expert, , prior range for $k=19.3-232$
Prior range of $q=0.418-1.45$

Results of CMSY analysis with altogether 1066 viable trajectories for 1066 r-k pairs
$r=0.409,95 \% \mathrm{CL}=0.32-0.522$, $\mathrm{k}=128,95 \% \mathrm{CL}=80.1-204$
MSY = 13.1, 95\% CL = 7.65-22.3
Relative biomass last year $=0.445 \mathrm{k}, 2.5$ th $=0.228,97.5$ th $=0.595$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.1$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.621,95 \% \mathrm{CL}=0.512-0.753, \mathrm{k}=114,95 \% \mathrm{CL}=85.5-152$
$\mathrm{MSY}=17.7,95 \% \mathrm{CL}=13.9-22.5$
Relative biomass in last year $=0.618 \mathrm{k}, 2.5$ th perc $=0.538,97.5$ th perc $=0.703$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.588$
$\mathrm{q}=0.57, \mathrm{lcl}=0.461, \mathrm{ucl}=0.705$
Results for Management (based on BSM analysis)
Fmsy $=0.311,95 \% \mathrm{CL}=0.256-0.377$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.311,95 \% C L=0.256-0.377$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 17.7, 95\% CL = 13.9-22.5
Bmsy $=57$, 95\% CL $=42.8-76$
Biomass in last year $=70.5,2.5$ th perc $=61.3,97.5$ perc $=80.1$
$B /$ Bmsy in last year $=1.24,2.5$ th perc $=1.08,97.5$ perc $=1.41$
Fishing mortality in last year $=0.182,2.5$ th perc $=0.16,97.5$ perc $=0.21$
F/Fmsy $=0.588,2.5$ th perc $=0.517,97.5$ perc $=0.675$

Stock status and exploitation in 2014
Biomass $=64.8, \mathrm{~B} / \mathrm{Bmsy}=1.14$, fishing mortality $\mathrm{F}=0.215, \mathrm{~F} / \mathrm{Fmsy}=0.692$
Comment: OK (RF 27.09.16)

D: Biomass

Year

Catch lin-icel

Exploitation

E: Exploitation rate

Year

F: Equilibrium curve

Species: Pandalus borealis, stock: Pan_bor_1
Northern shrimp in Arnarfjordur
Source: Report of WKLIFE IV, ICES CM 2014/ACOM:54
Region: Northeast Atlantic , Iceland Sea
Catch data used from years 1988-2013 , abundance $=$ CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass $=0.01-0.4$ in year 2006 default
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=0.96-15.4$
Prior range of $q=0.702-2.81$

Results of CMSY analysis with altogether 3258 viable trajectories for 2392 r-k pairs
$r=0.513,95 \% \mathrm{CL}=0.366-0.718, \mathrm{k}=5.12,95 \% \mathrm{CL}=3.3-7.92$
MSY $=0.656,95 \% \mathrm{CL}=0.498-0.865$
Relative biomass last year $=0.224 \mathrm{k}, 2.5 \mathrm{th}=0.014,97.5$ th $=0.394$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.02$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.599,95 \% C L=0.441-0.814, k=4.58,95 \% C L=3.41-6.15$
$\mathrm{MSY}=0.686,95 \% \mathrm{CL}=0.598-0.787$
Relative biomass in last year $=0.181 \mathrm{k}, 2.5$ th perc $=0.094,97.5$ th perc $=0.341$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.812$
$\mathrm{q}=1.09, \mathrm{lc\mid}=0.834, \mathrm{ucl}=1.42$
Results for Management (based on BSM analysis)
Fmsy $=0.299,95 \% C L=0.22-0.407$ (if $B>1 / 2$ Bmsy then $F m s y=0.5 r$)
Fmsy $=0.216,95 \% C L=0.159-0.294$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=0.686,95 \% C L=0.598-0.787$
Bmsy $=2.29,95 \% \mathrm{CL}=1.7-3.08$
Biomass in last year $=0.827,2.5$ th perc $=0.43,97.5$ perc $=1.56$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.361,2.5$ th perc $=0.188,97.5$ perc $=0.681$
Fishing mortality in last year $=0.243,2.5$ th perc $=0.129,97.5$ perc $=0.467$
F/Fmsy $=1.12$, 2.5th perc $=0.596,97.5$ perc $=2.16$
Stock status and exploitation in 2014
Biomass = , B/Bmsy = , fishing mortality F = , F/Fmsy =
Comment: OK (RF 27.09.16)

D: Biomass

Exploitation

Species: Pandalus borealis , stock: Pan_bor_2
Northern shrimp in Isafjardardjup
Source: Report of WKLIFE IV, ICES CM 2014/ACOM:54
Region: Northeast Atlantic , Iceland Sea
Catch data used from years 1988-2013 , abundance $=$ CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass $=0.01-0.4$ in year 2004 default
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=3.4-54.4$
Prior range of $q=0.632-2.53$

Results of CMSY analysis with altogether 3446 viable trajectories for 2832 r-k pairs
$r=0.529,95 \% \mathrm{CL}=0.37-0.755, \mathrm{k}=15.7,95 \% \mathrm{CL}=9.59-25.9$
$\mathrm{MSY}=2.08,95 \% \mathrm{CL}=1.43-3.02$
Relative biomass last year $=0.121 \mathrm{k}, 2.5$ th $=0.015,97.5$ th $=0.385$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.79$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.788,95 \%$ CL $=0.572-1.09, k=10.8,95 \% C L=7.91-14.7$
$\mathrm{MSY}=2.13,95 \% \mathrm{CL}=1.86-2.44$
Relative biomass in last year $=0.144 \mathrm{k}, 2.5$ th perc $=0.0758,97.5$ th perc $=0.359$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.84$
$\mathrm{q}=0.794, \mathrm{lcl}=0.607, \mathrm{ucl}=1.04$
Results for Management (based on BSM analysis)
Fmsy $=0.394,95 \% C L=0.286-0.543$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.226,95 \% C L=0.164-0.312$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=2.13,95 \% \mathrm{CL}=1.86-2.44$
Bmsy $=5.4,95 \% \mathrm{CL}=3.96-7.37$
Biomass in last year $=1.55,2.5$ th perc $=0.819,97.5$ perc $=3.87$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.287,2.5$ th perc $=0.152,97.5$ perc $=0.718$
Fishing mortality in last year $=0.727,2.5$ th perc $=0.291,97.5$ perc $=1.38$
F/Fmsy $=3.21,2.5$ th perc $=1.29,97.5$ perc $=6.08$
Stock status and exploitation in 2014
Biomass = , B/Bmsy = , fishing mortality F = , F/Fmsy =
Comment: OK (RF 27.09.16)

E: Exploitation rate

Exploitation

Species: Pollachius virens, stock: sai-faro Saithe in Division Vb (Faroe Saithe)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sai-faro.pdf
Region: Northeast Atlantic , Faroes
Catch data used from years 1961-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.5-0.9 in year 2004 expert
Prior final relative biomass $=0.2-0.6$, default
Prior range for $r=0.21-0.75$ expert, , prior range for $k=87-1242$
Prior range of $q=0.36-1.36$

Results of CMSY analysis with altogether 7727 viable trajectories for 1010 r-k pairs
$r=0.547,95 \% \mathrm{CL}=0.405-0.74, \mathrm{k}=334,95 \% \mathrm{CL}=227-490$
MSY = 45.7, 95\% CL = 38.9-53.7
Relative biomass last year $=0.48 \mathrm{k}, 2.5$ th $=0.222,97.5$ th $=0.596$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.574$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.45,95 \% \mathrm{CL}=0.349-0.579, k=350,95 \% \mathrm{CL}=279-439$
MSY = 39.4, $95 \% \mathrm{CL}=34.8-44.6$
Relative biomass in last year $=0.424 \mathrm{k}, 2.5$ th perc $=0.356,97.5$ th perc $=0.506$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.752$
$\mathrm{q}=0.501, \mathrm{cl}=0.397$, ucl $=0.631$
Results for Management (based on BSM analysis)
Fmsy $=0.225,95 \% C L=0.175-0.29$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.225,95 \% \mathrm{CL}=0.175-0.29$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=39.4,95 \%$ CL $=34.8-44.6$
Bmsy $=175,95 \% \mathrm{CL}=140-219$
Biomass in last year $=148,2.5$ th perc $=125,97.5$ perc $=177$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.848,2.5$ th perc $=0.712,97.5$ perc $=1.01$
Fishing mortality in last year $=0.169,2.5$ th perc $=0.142,97.5$ perc $=0.201$
F/Fmsy $=0.752,2.5$ th perc $=0.631,97.5$ perc $=0.896$
Stock status and exploitation in 2014
Biomass $=118, B / B m s y=0.671$, fishing mortality $\mathrm{F}=0.203, \mathrm{~F} / \mathrm{Fmsy}=0.903$
Comment: OK (RF 27.9.16)

Species: Pollachius virens, stock: sai-icel Icelandic saithe (Division Va)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sai-icel.pdf
Region: Northeast Atlantic , Iceland Sea
Catch data used from years 1980-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass $=0.01-0.4$ in year 1999 default
Prior final relative biomass $=0.2-0.6$, default
Prior range for $r=0.21-0.75$ expert, , prior range for $k=125-1791$
Prior range of $q=0.447-1.69$

Results of CMSY analysis with altogether 2976 viable trajectories for 1554 r-k pairs
$r=0.518,95 \% C L=0.366-0.733, k=494,95 \% C L=350-698$
MSY $=64,95 \%$ CL $=57.3-71.6$
Relative biomass last year $=0.527 \mathrm{k}, 2.5$ th $=0.261,97.5$ th $=0.598$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.748$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.586,95 \% \mathrm{CL}=0.471-0.73, \mathrm{k}=435,95 \% \mathrm{CL}=345-548$
$\mathrm{MSY}=63.8,95 \% \mathrm{CL}=58.3-69.7$
Relative biomass in last year $=0.501 \mathrm{k}$, 2.5 th perc $=0.425,97.5$ th perc $=0.581$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.759$
$q=0.619, \mathrm{lc\mid}=0.509$, ucl $=0.754$
Results for Management (based on BSM analysis)
Fmsy $=0.293,95 \% \mathrm{CL}=0.235-0.365$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.293,95 \% C L=0.235-0.365$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=63.8,95 \% \mathrm{CL}=58.3-69.7$
Bmsy $=218$, 95\% CL = 173-274
Biomass in last year $=218,2.5$ th perc $=185,97.5$ perc $=253$
$\mathrm{B} /$ Bmsy in last year $=1,2.5$ th perc $=0.851,97.5$ perc $=1.16$
Fishing mortality in last year $=0.222,2.5$ th perc $=0.192,97.5$ perc $=0.262$
F/Fmsy $=0.759$, 2.5th perc $=0.654,97.5$ perc $=0.893$
Stock status and exploitation in 2014
Biomass $=205, \mathrm{~B} / \mathrm{Bmsy}=0.941$, fishing mortality $\mathrm{F}=0.222, \mathrm{~F} / \mathrm{Fmsy}=0.759$
Comment: OK (RF 27.09.16)

D: Biomass

Year

Catch sai-icel

Exploitation

E: Exploitation rate

F: Equilibrium curve
Year

Species: Sebastes mentella, stock: smn-con
Beaked redfish in Subarea XIV and Division Va (Icelandic slope stock) (East of Greenland, Iceland grounds)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/smn-con.pdf
Region: Northeast Atlantic , Iceland Sea
Catch data used from years 2000-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass $=0.01-0.4$ in year 2011 default
Prior final relative biomass $=0.01-0.4$, default
Prior range for $r=0.11-0.43$ expert, , prior range for $k=73.7-1185$
Prior range of $q=0.62-2.49$

Results of CMSY analysis with altogether 9756 viable trajectories for 4025 r-k pairs
$r=0.3,95 \% C L=0.216-0.418, k=336,95 \% C L=168-671$
MSY = 25.2, 95\% CL = 12.4-51.3
Relative biomass last year $=0.273 \mathrm{k}, 2.5$ th $=0.021,97.5$ th $=0.396$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.668$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.284,95 \% C L=0.199-0.405, k=289,95 \% C L=209-399$
MSY = 20.5, 95\% CL = 16.2-26
Relative biomass in last year $=0.325 \mathrm{k}$, 2.5th perc $=0.224,97.5$ th perc $=0.431$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.699$
$\mathrm{q}=1.09, \mathrm{lcl}=0.827, \mathrm{ucl}=1.43$
Results for Management (based on BSM analysis)
Fmsy $=0.142,95 \% \mathrm{CL}=0.0997-0.203$ (if B > 1/2 Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.142,95 \% C L=0.0997-0.203$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 20.5, 95\% CL = 16.2-26
Bmsy $=144,95 \%$ CL = 104-200
Biomass in last year $=93.7,2.5$ th perc $=64.7,97.5$ perc $=125$
$\mathrm{B} /$ Bmsy in last year $=0.649,2.5$ th perc $=0.448,97.5$ perc $=0.863$
Fishing mortality in last year $=0.0993,2.5$ th perc $=0.0747,97.5$ perc $=0.144$
F/Fmsy $=0.699,2.5$ th perc $=0.526,97.5$ perc $=1.01$
Stock status and exploitation in 2014
Biomass $=85.7, \mathrm{~B} / \mathrm{Bmsy}=0.593$, fishing mortality $\mathrm{F}=0.111, \mathrm{~F} / \mathrm{Fmsy}=0.781$
Comment: OK (RF 27.09.16)

D: Biomass

Catch smn-con

E: Exploitation rate

F: Equilibrium curve

Species: Sebastes mentella, stock: smn-dp
Beaked redfish in Subareas V, XII, and XIV (Iceland and Faroes grounds, north of Azores, east of Greenland) and NAFO Subareas 1+2 (deep pelagic stock > 500 m)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/smn-dp.pdf
Region: Northeast Atlantic , Iceland Sea
Catch data used from years 1991-2014 , abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2005 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.11-0.43$ expert, , prior range for $k=255-4106$
Prior range of $q=0.000791-0.00317$
Results of CMSY analysis with altogether 5793 viable trajectories for 1259 r-k pairs
$r=0.3,95 \% \mathrm{CL}=0.216-0.418, \mathrm{k}=785,95 \% \mathrm{CL}=515-1197$
MSY = 59, 95\% CL = 49.3-70.5
Relative biomass last year $=0.28 \mathrm{k}, 2.5$ th $=0.025,97.5$ th $=0.393$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=1.03$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.187,95 \% \mathrm{CL}=0.121-0.288$, $\mathrm{k}=1057$, $95 \% \mathrm{CL}=796-1403$
MSY = 49.3, 95\% CL = 35.3-68.9
Relative biomass in last year $=0.155 \mathrm{k}, 2.5$ th perc $=0.113,97.5$ th perc $=0.22$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.56$
$q=0.00156,|c|=0.00121, u c l=0.00201$

Results for Management (based on BSM analysis)
Fmsy $=0.0933,95 \% \mathrm{CL}=0.0603-0.144$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.0577,95 \%$ CL $=0.0373-0.0893$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 49.3, 95\% CL = 35.3-68.9
Bmsy $=528,95 \% \mathrm{CL}=398-701$
Biomass in last year $=164,2.5$ th perc $=119,97.5$ perc $=232$
$\mathrm{B} /$ Bmsy in last year $=0.309,2.5$ th perc $=0.225,97.5$ perc $=0.44$
Fishing mortality in last year $=0.145,2.5$ th perc $=0.102,97.5$ perc $=0.2$
F/Fmsy $=2.52,2.5$ th perc $=1.77,97.5$ perc $=3.46$

Stock status and exploitation in 2014
Biomass $=164, \mathrm{~B} / \mathrm{Bmsy}=0.309$, fishing mortality $\mathrm{F}=0.145, \mathrm{~F} / \mathrm{Fmsy}=2.52$
Comment: OK (RF 27.09.16)

E: Exploitation rate

Species: Sebastes mentella , stock: smn-grl
Beaked redfish in Division XIVb (Demersal) (Southeast Greenland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/smn-grl.pdf
Region: Northeast Atlantic , Greenland Sea
Catch data used from years 1975-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2005 expert
Prior final relative biomass $=0.01-0.2$ expert
Prior range for $r=0.11-0.43$ expert, , prior range for $k=75.2-1209$
Prior range of $q=0.00551-0.0221$

Results of CMSY analysis with altogether 1780 viable trajectories for 1766 r-k pairs
$r=0.279,95 \% C L=0.188-0.416, k=616,95 \% C L=268-1414$
MSY $=43$, $95 \% \mathrm{CL}=15.6-118$
Relative biomass last year $=0.0666 \mathrm{k}, 2.5$ th $=0.0127,97.5$ th $=0.19$
Exploitation $F /(r / 2)$ in last year $=1.01$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.166,95 \% \mathrm{CL}=0.0951-0.29, \mathrm{k}=383,95 \% \mathrm{CL}=221-663$
MSY = 15.9, 95\% CL = 7.45-33.9
Relative biomass in last year $=0.021 \mathrm{k}$, 2.5th perc $=0.0111,97.5$ th perc $=0.0388$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=8.95$
$\mathrm{q}=0.00786, \mathrm{lcl}=0.00615, \mathrm{ucl}=0.01$
Results for Management (based on BSM analysis)
Fmsy $=0.083,95 \% \mathrm{CL}=0.0476-0.145$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.00698,95 \% C L=0.004-0.0122$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 15.9, 95\% CL = 7.45-33.9
Bmsy $=191,95 \%$ CL $=111-331$
Biomass in last year $=8.04,2.5$ th perc $=4.23,97.5$ perc $=14.9$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.042,2.5$ th perc $=0.0221,97.5$ perc $=0.0776$
Fishing mortality in last year $=0.743,2.5$ th perc $=0.402,97.5$ perc $=1.41$
F/Fmsy $=106,2.5$ th perc $=57.7,97.5$ perc $=202$

Stock status and exploitation in 2014
Biomass $=13.8, B / B m s y=0.0722$, fishing mortality $F=0.334, F / F m s y=27.8$
Comment: OK (RF 27.09.16)

Species: Sebastes mentella , stock: smn-sp
Beaked redfish in Subareas V, XII, and XIV (Iceland and Faroes grounds, north of Azores, east of Greenland) and NAFO Subareas $1+2$ (shallow pelagic stock < 500 m)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/smn-sp.pdf
Region: Northeast Atlantic , Iceland Sea
Catch data used from years 1982-2015, abundance $=$ CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 1995 expert
Prior final relative biomass $=0.01-0.2$ expert
Prior range for $r=0.11-0.43$ expert, , prior range for $k=233-3746$
Prior range of $q=0.00179-0.00717$

Results of CMSY analysis with altogether 2403 viable trajectories for 1685 r-k pairs
$r=0.292,95 \% \mathrm{CL}=0.205-0.414, \mathrm{k}=681,95 \% \mathrm{CL}=454-1023$
MSY = 49.6, 95\% CL = 41.9-58.8
Relative biomass last year $=0.0701 \mathrm{k}, 2.5$ th $=0.0126,97.5$ th $=0.19$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.649$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.164,95 \% \mathrm{CL}=0.0972-0.275, \mathrm{k}=1043,95 \% \mathrm{CL}=742-1465$
MSY = 42.6, 95\% CL = 25.8-70.5
Relative biomass in last year $=0.0158 \mathrm{k}, 2.5$ th perc $=0.0112$, 97.5 th perc $=0.0255$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=4.17$
$q=0.00412, \mathrm{lc\mid}=0.00316, u c l=0.00536$

Results for Management (based on BSM analysis)
Fmsy $=0.0818,95 \% \mathrm{CL}=0.0486-0.137$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.00515,95 \% C L=0.00306-0.00866$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=42.6,95 \%$ CL $=25.8-70.5$
Bmsy $=521,95 \%$ CL $=371-733$
Biomass in last year $=16.4,2.5$ th perc $=11.7,97.5$ perc $=26.6$
$B /$ Bmsy in last year $=0.0315,2.5$ th perc $=0.0224,97.5$ perc $=0.051$
Fishing mortality in last year $=0.341,2.5$ th perc $=0.21,97.5$ perc $=0.479$
F/Fmsy $=66.2,2.5$ th perc $=40.8,97.5$ perc $=93$

Stock status and exploitation in 2014
Biomass $=19.8, \mathrm{~B} /$ Bmsy $=0.0381$, fishing mortality $\mathrm{F}=0.324, \mathrm{~F} / \mathrm{Fmsy}=52$
Comment: OK (RF 27.09.16) Acoustic survey data used for abundance.

D: Biomass

Year

E: Exploitation rate

Year

F: Equilibrium curve

Catch smn-sp

Species: Sebastes norvegicus , stock: smr-5614
Golden redfish in Subareas V, VI, XII, and XIV (Iceland and Faroes grounds, West of Scotland, North of Azores, East of Greenland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/smr-
5614.pdf

Region: Northeast Atlantic, Greenland Sea
Catch data used from years 1971-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass $=0.01-0.4$ in year 2001 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.13-0.48$ expert, , prior range for $k=235-3475$
Prior range of $q=0.803-3.09$
Results of CMSY analysis with altogether 2008 viable trajectories for 1285 r-k pairs
$r=0.295,95 \% C L=0.215-0.405, k=937,95 \% C L=637-1377$
MSY = 69.1, 95\% CL = 53.7-89
Relative biomass last year $=0.532 k, 2.5$ th $=0.283,97.5$ th $=0.597$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.705$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.36,95 \% \mathrm{CL}=0.304-0.426, k=744,95 \% \mathrm{CL}=629-881$
MSY = 67, 95\% CL = 62.1-72.4
Relative biomass in last year $=0.518 \mathrm{k}, 2.5$ th perc $=0.475,97.5$ th perc $=0.568$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.742$
$\mathrm{q}=0.932, \mathrm{lcl}=0.796, \mathrm{ucl}=1.09$

Results for Management (based on BSM analysis)
Fmsy $=0.18,95 \% C L=0.152-0.213$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.18,95 \% C L=0.152-0.213$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 67, 95\% CL = 62.1-72.4
Bmsy $=372$, 95\% CL $=314-441$
Biomass in last year $=386,2.5$ th perc $=353,97.5$ perc $=423$
$B /$ Bmsy in last year $=1.04,2.5$ th perc $=0.95,97.5$ perc $=1.14$
Fishing mortality in last year $=0.134,2.5$ th perc $=0.122,97.5$ perc $=0.146$
F/Fmsy $=0.742$, 2.5th perc $=0.678,97.5$ perc $=0.811$
Stock status and exploitation in 2014
Biomass $=376, \mathrm{~B} / \mathrm{Bmsy}=1.01$, fishing mortality $\mathrm{F}=0.135, \mathrm{~F} / \mathrm{Fmsy}=0.749$
Comment: OK (RF 27.09.16)

D: Biomass

Catch smr-5614

Exploitation

E: Exploitation rate

Biomass

Species: Brosme brosme , stock: usk-icel
Tusk in Division Va and Subarea XIV
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/usk-icel.pdf
Region: Northeast Atlantic , Iceland Sea
Catch data used from years 1981-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2003 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.21-0.62$ expert, , prior range for $k=13.7-161$
Prior range of $q=0.129-0.442$

Results of CMSY analysis with altogether 1003 viable trajectories for $796 r-k$ pairs
$r=0.466,95 \% \mathrm{CL}=0.358-0.608, \mathrm{k}=59.9,95 \% \mathrm{CL}=42.5-84.5$
MSY = 6.99, $95 \% \mathrm{CL}=5.87-8.33$
Relative biomass last year $=0.34 \mathrm{k}, 2.5 \mathrm{th}=0.21,97.5 \mathrm{th}=0.57$
Exploitation $F /(r / 2)$ in last year $=1.2$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.525,95 \% \mathrm{CL}=0.408-0.677, \mathrm{k}=54.2,95 \% \mathrm{CL}=42.4-69.3$
MSY $=7.12$, 95% CL $=6.25-8.11$
Relative biomass in last year $=0.581 \mathrm{k}, 2.5$ th perc $=0.461,97.5$ th perc $=0.681$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.583$
$q=0.206, \mathrm{lcl}=0.164, u c l=0.258$
Results for Management (based on BSM analysis)
Fmsy $=0.263,95 \% \mathrm{CL}=0.204-0.338$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.263,95 \% C L=0.204-0.338$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=7.12,95 \%$ CL $=6.25-8.11$
Bmsy $=27.1,95 \% C L=21.2-34.6$
Biomass in last year $=31.5,2.5$ th perc $=25,97.5$ perc $=36.9$
$\mathrm{B} /$ Bmsy in last year $=1.16,2.5$ th perc $=0.922,97.5$ perc $=1.36$
Fishing mortality in last year $=0.153,2.5$ th perc $=0.131,97.5$ perc $=0.193$
F/Fmsy $=0.583,2.5$ th perc $=0.497,97.5$ perc $=0.734$
Stock status and exploitation in 2014
Biomass $=29.4, \mathrm{~B} / \mathrm{Bmsy}=1.08$, fishing mortality $\mathrm{F}=0.205$, $\mathrm{F} / \mathrm{Fmsy}=0.781$
Comment: OK (RF 27.09.16)

0.3

Year

Catch usk-icel

E: Exploitation rate

Year

C: Analysis of viable r-k

F: Equilibrium curve

Exploitation

Greater North Sea (analyzed with CMSY_O_7m.R)

Species: Scophthalmus rhombus, stock: bll-nsea
Brill in Subarea IV, Divisions IIIa and VIId,e
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/bll-nsea.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1987-2014 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass $=0.01-0.4$ in year 2005 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.2-0.8$ default, prior range for $k=3.41-54.6$
Prior range of $q=0.000134-0.000536$

Results of CMSY analysis with altogether 1673 viable trajectories for 1110 r-k pairs
$r=0.553,95 \% C L=0.392-0.78, k=16.1,95 \% C L=10.6-24.4$
MSY = 2.22, 95\% CL = 1.84-2.68
Relative biomass last year $=0.346 \mathrm{k}, 2.5 \mathrm{th}=0.212,97.5 \mathrm{th}=0.561$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.36$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.639,95 \% C L=0.448-0.91, k=13.4,95 \% C L=9.37-19.2$
MSY = 2.14, 95\% CL = 1.94-2.36
Relative biomass in last year $=0.431 \mathrm{k}, 2.5$ th perc $=0.246,97.5$ th perc $=0.616$
Exploitation $F /(r / 2)$ in last year $=1.05$
$q=0.000232, \mathrm{lcl}=0.000174, \mathrm{ucl}=0.000308$

Results for Management (based on BSM analysis)
Fmsy $=0.319,95 \% C L=0.224-0.455$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.319,95 \% C L=0.224-0.455$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=2.14,95 \% C L=1.94-2.36$
Bmsy $=6.71$, 95\% CL $=4.69-9.6$
Biomass in last year $=5.78,2.5$ th perc $=3.3,97.5$ perc $=8.26$
$B /$ Bmsy in last year $=0.861,2.5$ th perc $=0.493,97.5$ perc $=1.23$
Fishing mortality in last year $=0.336,2.5$ th perc $=0.235,97.5$ perc $=0.588$
F/Fmsy $=1.05,2.5$ th perc $=0.736,97.5$ perc $=1.84$

Stock status and exploitation in 2014
Biomass $=5.78, \mathrm{~B} / \mathrm{Bmsy}=0.861$, fishing mortality $\mathrm{F}=0.336, \mathrm{~F} / \mathrm{Fmsy}=1.05$
Comment: OK (RF 23.09.16)

Species: Dicentrarchus labrax , stock: Bss-47
Seabass in Divisions IVb and c, VIIa, and VIId-h (Central and South North Sea, Irish Sea, English Channel, Bristol Channel, Celtic Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/bss-47.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1985-2015, abundance $=$ CPUE
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass= $0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.16-0.88$ expert, , prior range for $k=6.9-152$
Prior range of $q=0.637-2.99$

Results of CMSY analysis with altogether 1923 viable trajectories for 1913 r-k pairs
$r=0.361,95 \% C L=0.222-0.584, k=55.4,95 \% C L=41-74.8$
MSY = 5, 95\% CL = 4.59-5.44
Relative biomass last year $=0.181 \mathrm{k}, 2.5 \mathrm{th}=0.0193,97.5 \mathrm{th}=0.368$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.2$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.41,95 \% C L=0.289-0.582, k=43.2,95 \% C L=31.5-59.2$
MSY = 4.43, 95\% CL = 3.31-5.92
Relative biomass in last year $=0.226 \mathrm{k}, 2.5$ th perc $=0.157,97.5$ th perc $=0.3$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.42$
$\mathrm{q}=0.951, \mathrm{lc\mid}=0.687, \mathrm{ucl}=1.32$

Results for Management (based on BSM analysis)
Fmsy $=0.205,95 \% C L=0.145-0.291$ (if $B>1 / 2$ Bmsy then $F m s y=0.5 r$)
Fmsy $=0.185,95 \% C L=0.131-0.263$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=4.43,95 \% C L=3.31-5.92$
Bmsy $=21.6$, 95\% CL $=15.7$ - 29.6
Biomass in last year $=9.74,2.5$ th perc $=6.78,97.5$ perc $=12.9$
$\mathrm{B} /$ Bmsy in last year $=0.451,2.5$ th perc $=0.314,97.5$ perc $=0.599$
Fishing mortality in last year $=0.292,2.5$ th perc $=0.22,97.5$ perc $=0.419$
F/Fmsy $=1.57,2.5$ th perc $=1.19,97.5$ perc $=2.26$

Stock status and exploitation in 2014
Biomass $=11.8, \mathrm{~B} / \mathrm{Bmsy}=0.545$, fishing mortality $\mathrm{F}=0.313, \mathrm{~F} / \mathrm{Fmsy}=1.52$
Comment: OK (RF 23.09.16)

D: Biomass

Year

E: Exploitation rate

Year

Exploitation

Species: Gadus morhua , stock: cod-347d
Cod in Subarea IV (North Sea), Divison VIId and IIIa West
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/cod-347d.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1963-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass $=0.01-0.1$ in year 2005 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.23-0.96$ expert, , prior range for $k=408-6808$
Prior range of $q=0.172-0.703$
Results of CMSY analysis with altogether 72 viable trajectories for 72 r -k pairs
$r=0.333,95 \% \mathrm{CL}=0.283-0.392, \mathrm{k}=3259,95 \% \mathrm{CL}=2604-4079$
MSY = 271, 95\% CL = 220-334
Relative biomass last year $=0.0383 \mathrm{k}, 2.5$ th $=0.0125,97.5$ th $=0.102$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.24$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.442,95 \% C L=0.35-0.559, k=2488,95 \% C L=1957-3162$
MSY $=275,95 \% \mathrm{CL}=226-335$
Relative biomass in last year $=0.319 \mathrm{k}, 2.5$ th perc $=0.265,97.5$ th perc $=0.385$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.298$
$q=0.193, \mathrm{lcl}=0.158$, ucl $=0.235$
Results for Management (based on BSM analysis)
Fmsy $=0.221,95 \% \mathrm{CL}=0.175-0.279$ (if $\mathrm{B}>1 / 2 \mathrm{Bmsy}$ then $\mathrm{Fmsy}=0.5 \mathrm{r}$)
Fmsy $=0.221,95 \% C L=0.175-0.279$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 275, 95\% CL = 226-335
Bmsy $=1244,95 \%$ CL $=979-1581$
Biomass in last year $=793,2.5$ th perc $=660,97.5$ perc $=958$
$B /$ Bmsy in last year $=0.638,2.5$ th perc $=0.531,97.5$ perc $=0.77$
Fishing mortality in last year $=0.066,2.5$ th perc $=0.0546,97.5$ perc $=0.0792$
F/Fmsy $=0.298,2.5$ th perc $=0.247,97.5$ perc $=0.358$
Stock status and exploitation in 2014
Biomass $=667, B / B m s y=0.536$, fishing mortality $\mathrm{F}=0.0689$, $\mathrm{F} / \mathrm{Fmsy}=0.311$
Comment: OK (RF 11.07.16). Final F much too low; probably discards are underestimated (RF 23.09.2016)

B: Finding viable r-k

0.4

C: Analysis of viable r-k

Species: Gadus morhua , stock: cod-kat Cod in Division IIla East (Kattegat)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/cod-kat.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1971-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.3 in year 1997 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.23-0.96$ expert, , prior range for $k=20.2-337$
Prior range of $q=5.09 \mathrm{e}-05-0.000208$
Results of CMSY analysis with altogether 222 viable trajectories for 218 r -k pairs
$r=0.35,95 \% \mathrm{CL}=0.276-0.444, \mathrm{k}=178,95 \% \mathrm{CL}=131-241$
MSY = 15.6, 95\% CL = 11.1-21.8
Relative biomass last year $=0.0883 \mathrm{k}, 2.5$ th $=0.0144,97.5$ th $=0.287$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.17$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.525,95 \% \mathrm{CL}=0.336-0.82, \mathrm{k}=109,95 \% \mathrm{CL}=74.3-159$
MSY = 14.3, 95\% CL = 9.51-21.4
Relative biomass in last year $=0.194 \mathrm{k}$, 2.5th perc $=0.123,97.5$ th perc $=0.259$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.0916$
$\mathrm{q}=8.45 \mathrm{e}-05, \mathrm{lcl}=6.54 \mathrm{e}-05, \mathrm{ucl}=0.000109$
Results for Management (based on BSM analysis)
Fmsy $=0.263,95 \% C L=0.168-0.41$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.204,95 \% C L=0.131-0.318$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 14.3, 95\% CL = 9.51-21.4
Bmsy $=54.3,95 \% \mathrm{CL}=37.2-79.5$
Biomass in last year $=21.1,2.5$ th perc $=13.4,97.5$ perc $=28.1$
$\mathrm{B} /$ Bmsy in last year $=0.389,2.5$ th perc $=0.246,97.5$ perc $=0.517$
Fishing mortality in last year $=0.0241,2.5$ th perc $=0.0181,97.5$ perc $=0.038$
F/Fmsy $=0.118,2.5$ th perc $=0.0886,97.5$ perc $=0.186$
Stock status and exploitation in 2014
Biomass $=12, \mathrm{~B} / \mathrm{Bmsy}=0.221$, fishing mortality $\mathrm{F}=0.0372$, $\mathrm{F} / \mathrm{Fmsy}=0.32$
Comment: OK (RF 23.09.16) r updated

B : Finding viable $r-k$

E: Exploitation rate

C: Analysis of viable r-k

Exploitation

Species: Limanda limanda, stock: dab-nsea
Dab in Subarea IV and Division IIIa
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/dab-nsea.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1950-2014 , abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ default
Prior intermediate rel. biomass= 0.2-0.6 in year 2000 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.24-0.98$ expert, , prior range for $k=26.5-649$
Prior range of $q=0.000256-0.00104$
Results of CMSY analysis with altogether 1084 viable trajectories for 789 r-k pairs
$r=0.684,95 \% \mathrm{CL}=0.49-0.954, \mathrm{k}=55.5,95 \% \mathrm{CL}=37.6-82$
MSY = 9.49, 95\% CL = 8.48-10.6
Relative biomass last year $=0.63 \mathrm{k}, 2.5 \mathrm{th}=0.507,97.5 \mathrm{th}=0.784$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.496$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.575,95 \% \mathrm{CL}=0.38-0.87, \mathrm{k}=78.3,95 \% \mathrm{CL}=55.9-110$
MSY = 11.3, 95\% CL = 9.15-13.9
Relative biomass in last year $=0.84 \mathrm{k}$, 2.5th perc $=0.66,97.5$ th perc $=0.977$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.262$
$\mathrm{q}=0.000433, \mathrm{cl}=0.000322, \mathrm{ucl}=0.000582$
Results for Management (based on BSM analysis)
Fmsy $=0.287,95 \% \mathrm{CL}=0.19-0.435$ (if B > 1/2 Bmsy then Fmsy $=0.5$ r)
Fmsy $=0.287,95 \% C L=0.19-0.435$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 11.3, 95\% CL = 9.15-13.9
Bmsy $=39.2,95 \%$ CL $=27.9-54.9$
Biomass in last year $=65.8,2.5$ th perc $=51.7,97.5$ perc $=76.6$
$B /$ Bmsy in last year $=1.68,2.5$ th perc $=1.32,97.5$ perc $=1.95$
Fishing mortality in last year $=0.0753,2.5$ th perc $=0.0647,97.5$ perc $=0.0958$
F/Fmsy $=0.262,2.5$ th perc $=0.225,97.5$ perc $=0.333$
Stock status and exploitation in 2014
Biomass $=65.8, \mathrm{~B} / \mathrm{Bmsy}=1.68$, fishing mortality $\mathrm{F}=0.0753, \mathrm{~F} / \mathrm{Fmsy}=0.262$
Comment: OK (RF 23.09.16) r updated

Species: Platichthys flesus, stock: fle-nsea
Flounder in Division IIla and Subarea IV
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/fle-nsea.pdf
Region: Northeast Atlantic, Greater North Sea
Catch data used from years 1983-2014, abundance $=$ CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.2-0.6 in year 2000 expert
Prior final relative biomass $=0.2-0.6$, default
Prior range for $r=0.22-0.97$ expert, , prior range for $k=5.75-101$
Prior range of $q=0.000282-0.00119$

Results of CMSY analysis with altogether 2570 viable trajectories for 1359 r-k pairs
$r=0.622,95 \% C L=0.414-0.935, k=23.9,95 \% C L=16-35.6$
MSY = 3.72, 95\% CL = 3.23-4.28
Relative biomass last year $=0.416 \mathrm{k}, 2.5 \mathrm{th}=0.213,97.5 \mathrm{th}=0.591$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.673$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.87,95 \% C L=0.575-1.32, k=19,95 \% C L=13.3-27.1$
MSY = 4.13, 95\% CL = 3.44-4.97
Relative biomass in last year $=0.44 \mathrm{k}, 2.5$ th perc $=0.256,97.5$ th perc $=0.724$
Exploitation $F /(r / 2)$ in last year $=0.567$
$q=0.000389, \mathrm{lcl}=0.000299, \mathrm{ucl}=0.000508$

Results for Management (based on BSM analysis)
Fmsy $=0.435,95 \% C L=0.288-0.658$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.435,95 \% C L=0.288-0.658$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 4.13, 95\% CL = 3.44-4.97
Bmsy $=9.5$, 95\% CL $=6.66-13.6$
Biomass in last year $=8.36,2.5$ th perc $=4.86,97.5$ perc $=13.8$
$B /$ Bmsy in last year $=0.88,2.5$ th perc $=0.511,97.5$ perc $=1.45$
Fishing mortality in last year $=0.247,2.5$ th perc $=0.15,97.5$ perc $=0.425$
F/Fmsy $=0.567,2.5$ th perc $=0.345,97.5$ perc $=0.976$

Stock status and exploitation in 2014
Biomass $=8.36$, $\mathrm{B} / \mathrm{Bmsy}=0.88$, fishing mortality $\mathrm{F}=0.247$, $\mathrm{F} / \mathrm{Fmsy}=0.567$
Comment: OK (RF 23.09.16)

D: Biomass

E: Exploitation rate

Year

F: Equilibrium curve

Species: Melanogrammus aeglefinus, stock: had-346a
Haddock in Sub-area IV (North Sea) and Division IIla West and VIa
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/had-346a.pdf
Region: Northeast Atlantic, Greater North Sea
Catch data used from years 1972-2014 , abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2009 default
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.23-1$ expert, , prior range for $k=431-7498$
Prior range of $q=1.24-5.16$

Results of CMSY analysis with altogether 395 viable trajectories for 378 r-k pairs
$r=0.359,95 \% C L=0.274-0.47, k=2573,95 \% C L=2011-3293$
MSY = 231, 95\% CL = 188-283
Relative biomass last year $=0.142 \mathrm{k}, 2.5 \mathrm{th}=0.0174,97.5$ th $=0.29$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.696$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.438,95 \% C L=0.321-0.596, k=2291,95 \% C L=1819-2885$
MSY = 251, 95\% CL = 212-296
Relative biomass in last year $=0.105 \mathrm{k}, 2.5$ th perc $=0.0632,97.5$ th perc $=0.173$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.883$
$\mathrm{q}=1.8, \mathrm{lcl}=1.39, \mathrm{ucl}=2.33$

Results for Management (based on BSM analysis)
Fmsy $=0.219,95 \% C L=0.161-0.298$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0916,95 \% C L=0.0672-0.125$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 251, 95\% CL = 212-296
Bmsy = 1145, 95\% CL = 909-1443
Biomass in last year $=240,2.5$ th perc $=145,97.5$ perc $=396$
$B / B m s y$ in last year $=0.209,2.5$ th perc $=0.126,97.5$ perc $=0.345$
Fishing mortality in last year $=0.193,2.5$ th perc $=0.117,97.5$ perc $=0.32$
F/Fmsy $=2.11,2.5$ th perc $=1.28,97.5$ perc $=3.49$

Stock status and exploitation in 2014
Biomass $=240$, $\mathrm{B} / \mathrm{Bmsy}=0.209$, fishing mortality $\mathrm{F}=0.193$, $\mathrm{F} / \mathrm{Fmsy}=2.11$
Comment: OK (RF 23.09.16)

B: Finding viable r-k

C: Analysis of viable r-k

E: Exploitation rate

Exploitation

Species: Clupea harengus , stock: her-47d3
Herring in Subarea IV and Divisions IIIla and VIId
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/her-47d3.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1977-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.2$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 1995 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.16-1$ expert, , prior range for $k=1652-63273$
Prior range of $q=0.566-2.86$
Results of CMSY analysis with altogether 6411 viable trajectories for 2181 r -k pairs
$r=0.625,95 \%$ CL $=0.404-0.968, \mathrm{k}=4418,95 \% \mathrm{CL}=2403-8123$
MSY = 690, 95\% CL = 493-967
Relative biomass last year $=0.809 \mathrm{k}, 2.5 \mathrm{th}=0.731,97.5 \mathrm{th}=0.869$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=0.454$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.979,95 \% \mathrm{CL}=0.761-1.26, \mathrm{k}=2975,95 \% \mathrm{CL}=2268-3903$
MSY = 729, 95\% CL = 637-833
Relative biomass in last year $=0.791 \mathrm{k}$, 2.5th perc $=0.689,97.5$ th perc $=0.903$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.429$
$\mathrm{q}=0.768, \mathrm{lcl}=0.591$, ucl $=0.997$
Results for Management (based on BSM analysis)
Fmsy $=0.49,95 \% \mathrm{CL}=0.381-0.63$ (if $\mathrm{B}>1 / 2$ Bmsy then $\mathrm{Fmsy}=0.5 \mathrm{r}$)
Fmsy $=0.49,95 \% \mathrm{CL}=0.381-0.63$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 729, 95\% CL = 637-833
Bmsy $=1488$, 95\% CL = 1134-1951
Biomass in last year $=2353,2.5$ th perc $=2050,97.5$ perc $=2688$
$B /$ Bmsy in last year $=1.58,2.5$ th perc $=1.38,97.5$ perc $=1.81$
Fishing mortality in last year $=0.21,2.5$ th perc $=0.184,97.5$ perc $=0.241$
F/Fmsy $=0.429,2.5$ th perc $=0.375,97.5$ perc $=0.492$
Stock status and exploitation in 2014
Biomass $=2523, \mathrm{~B} / \mathrm{Bmsy}=1.7$, fishing mortality $\mathrm{F}=0.205$, $\mathrm{F} / \mathrm{Fmsy}=0.419$
Comment: OK (RF 23.09.16)

B: Finding viable r-k

C: Analysis of viable r-k

D: Biomass

E: Exploitation rate

F: Equilibrium curve

Species: Trachurus trachurus, stock: hom-nsea
Horse mackerel in Divisions IIIa, IVb,c, and VIId (Skagerrak and Kattegat, Southern and Central North Sea, Eastern English Channel)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/hom-nsea.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1984-2014 , abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2005 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.22-0.98$ expert, , prior range for $k=45-800$
Prior range of $q=0.0446-0.188$

Results of CMSY analysis with altogether 3345 viable trajectories for $624 r$ r-k pairs
$r=0.67,95 \% \mathrm{CL}=0.472-0.953, \mathrm{k}=180,95 \% \mathrm{CL}=119-271$
MSY = 30.1, 95\% CL = 26.7-33.9
Relative biomass last year $=0.193 \mathrm{k}, 2.5 \mathrm{th}=0.0222,97.5 \mathrm{th}=0.295$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.53$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.476,95 \% \mathrm{CL}=0.295-0.769, \mathrm{k}=237,95 \% \mathrm{CL}=166-339$
MSY = 28.2, 95\% CL = 23.8-33.3
Relative biomass in last year $=0.146 \mathrm{k}$, 2.5th perc $=0.0727,97.5$ th perc $=0.322$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.63$
$q=0.0876, \mathrm{lcl}=0.0648, u c l=0.118$
Results for Management (based on BSM analysis)
Fmsy $=0.238,95 \%$ CL $=0.147-0.385$ (if B > 1/2 Bmsy then Fmsy $=0.5$ r)
Fmsy $=0.139,95 \% C L=0.0861-0.225$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 28.2, 95\% CL = 23.8-33.3
Bmsy $=118,95 \%$ CL $=82.8-169$
Biomass in last year $=34.6,2.5$ th perc $=17.2,97.5$ perc $=76.4$
$\mathrm{B} /$ Bmsy in last year $=0.292,2.5$ th perc $=0.145,97.5$ perc $=0.645$
Fishing mortality in last year $=0.387,2.5$ th perc $=0.175,97.5$ perc $=0.778$
F/Fmsy $=2.78,2.5$ th perc $=1.26,97.5$ perc $=5.59$
Stock status and exploitation in 2014
Biomass $=34.6, \mathrm{~B} / \mathrm{Bmsy}=0.292$, fishing mortality $\mathrm{F}=0.387$, $\mathrm{F} / \mathrm{Fmsy}=2.78$
Comment: OK (RF 23.09.16)

Exploitation

E: Exploitation rate

C: Analysis of viable r-k

Species: Microstomus kitt , stock: lem-nsea
Lemon sole in Subarea IV (North Sea) and Divisions IIIa (Skagerrak-Kattegat) and VIId (Eastern Channel)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/lem-nsea.pdf
Region: Northeast Atlantic, Greater North Sea
Catch data used from years 1975-2014, abundance $=$ CPUE
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass= 0.01-0.4 in year 2009 default
Prior final relative biomass $=0.2-0.6$, default
Prior range for $r=0.21-0.87$ expert, , prior range for $k=10-163$
Prior range of $q=8.85 e-05-0.000356$

Results of CMSY analysis with altogether 2388 viable trajectories for 1551 r-k pairs
$r=0.502,95 \% C L=0.322-0.782, k=54.2,95 \% C L=39.1-75$
MSY = 6.79, 95\% CL = 6.11-7.56
Relative biomass last year $=0.517 \mathrm{k}, 2.5 \mathrm{th}=0.274,97.5 \mathrm{th}=0.596$
Exploitation $F /(r / 2)$ in last year $=0.545$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.714,95 \% C L=0.447-1.14, k=37.9,95 \% C L=23.4-61.6$
MSY = 6.77, 95\% CL = 5.68-8.08
Relative biomass in last year $=0.405 \mathrm{k}, 2.5$ th perc $=0.248,97.5$ th perc $=0.604$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.673$
$\mathrm{q}=0.000113, \mathrm{lcl}=8.6 \mathrm{e}-05, \mathrm{ucl}=0.000149$

Results for Management (based on BSM analysis)
Fmsy $=0.357,95 \% C L=0.224-0.57$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.357,95 \% C L=0.224-0.57$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 6.77, 95\% CL = 5.68-8.08
Bmsy = 19, 95\% CL = 11.7-30.8
Biomass in last year $=15.4,2.5$ th perc $=9.4,97.5$ perc $=22.9$
$B /$ Bmsy in last year $=0.809,2.5$ th perc $=0.496,97.5$ perc $=1.21$
Fishing mortality in last year $=0.24,2.5$ th perc $=0.161,97.5$ perc $=0.392$
F/Fmsy $=0.673,2.5$ th perc $=0.451,97.5$ perc $=1.1$
Stock status and exploitation in 2014
Biomass $=15.4, \mathrm{~B} / \mathrm{Bmsy}=0.809$, fishing mortality $\mathrm{F}=0.24, \mathrm{~F} / \mathrm{Fmsy}=0.673$
Comment: OK (RF 23.09.16)

D: Biomass

Catch lem-nsea

E: Exploitation rate

F: Equilibrium curve

Species: Lepidorhombus spp. , stock: meg-4a6a
Megrim in Divisions IVa and VIa (Northern North Sea, West of Scotland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/meg-4a6a.pdf
Region: Northeast Atlantic, Greater North Sea
Catch data used from years 1985-2014 , abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2005 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.2$ - 0.8 default , prior range for $k=8.09-129$
Prior range of $q=8.6 e-05-0.000344$

Results of CMSY analysis with altogether 4403 viable trajectories for 1548 r-k pairs
$r=0.537,95 \% C L=0.374-0.77, k=35.1,95 \% C L=24.3-50.6$
MSY $=4.71,95 \% \mathrm{CL}=4.22-5.25$
Relative biomass last year $=0.53 \mathrm{k}, 2.5 \mathrm{th}=0.273,97.5 \mathrm{th}=0.598$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.605$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.633,95 \% C L=0.477-0.839, k=30.5,95 \% C L=23-40.5$
MSY = 4.83, 95\% CL = 4.25-5.49
Relative biomass in last year $=0.59 \mathrm{k}, 2.5$ th perc $=0.461,97.5$ th perc $=0.695$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.493$
$\mathrm{q}=0.000105, \mathrm{lc\mid}=8.23 \mathrm{e}-05, \mathrm{ucl}=0.000134$

Results for Management (based on BSM analysis)
Fmsy $=0.316,95 \% C L=0.239-0.42$ (if $B>1 / 2$ Bmsy then $\mathrm{Fmsy}=0.5 r$)
Fmsy $=0.316,95 \% C L=0.239-0.42$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=4.83,95 \% C L=4.25-5.49$
Bmsy $=15.3$, 95\% CL = 11.5-20.3
Biomass in last year $=18,2.5$ th perc $=14.1,97.5$ perc $=21.2$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=1.18,2.5$ th perc $=0.923,97.5$ perc $=1.39$
Fishing mortality in last year $=0.156,2.5$ th perc $=0.132,97.5$ perc $=0.199$
F/Fmsy $=0.493,2.5$ th perc $=0.418,97.5$ perc $=0.63$

Stock status and exploitation in 2014
Biomass $=18, \mathrm{~B} / \mathrm{Bmsy}=1.18$, fishing mortality $\mathrm{F}=0.156, \mathrm{~F} / \mathrm{Fmsy}=0.493$
Comment: OK (RF 23.09.16)

Catch meg-4a6a

Species: Mullus surmuletus, stock: mur-347d
Striped red mullet - in Subarea IV (North Sea) and Divisions VIId (Eastern English Channel) and IIIa (Skagerrak-Kattegat)
Source: http://ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/mur-347d.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 2000-2014 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2010 default
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.46-1.6$ expert, , prior range for $k=2.62-36.1$
Prior range of $q=0.182-0.675$
Results of CMSY analysis with altogether 2445 viable trajectories for 1580 r -k pairs
$r=1.14,95 \% \mathrm{CL}=0.84-1.55, \mathrm{k}=12,95 \% \mathrm{CL}=8.17-17.5$
MSY = 3.41, 95\% CL = 2.84-4.09
Relative biomass last year $=0.19 \mathrm{k}, 2.5 \mathrm{th}=0.0175,97.5 \mathrm{th}=0.39$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.733$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.811,95 \% \mathrm{CL}=0.613-1.07, \mathrm{k}=16.1,95 \% \mathrm{CL}=12.2-21.3$
MSY = 3.27, 95\% CL = 2.84-3.77
Relative biomass in last year $=0.154 \mathrm{k}$, 2.5th perc $=0.0677,97.5$ th perc $=0.401$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.72$
$\mathrm{q}=0.347, \mathrm{lcl}=0.269, u c \mathrm{l}=0.448$
Results for Management (based on BSM analysis)
Fmsy $=0.406,95 \% C L=0.307-0.537$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.25,95 \% C L=0.189-0.331$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 3.27, 95\% CL = 2.84-3.77
Bmsy $=8.06$, 95\% CL $=6.11-10.6$
Biomass in last year $=2.49,2.5$ th perc $=1.09,97.5$ perc $=6.46$
$B /$ Bmsy in last year $=0.309,2.5$ th perc $=0.135,97.5$ perc $=0.801$
Fishing mortality in last year $=0.696,2.5$ th perc $=0.268,97.5$ perc $=1.59$
F/Fmsy $=2.78,2.5$ th perc $=1.07,97.5$ perc $=6.34$

Stock status and exploitation in 2014
Biomass $=2.49, \mathrm{~B} / \mathrm{Bmsy}=0.309$, fishing mortality $\mathrm{F}=0.696, \mathrm{~F} / \mathrm{Fmsy}=2.78$
Comment: OK (RF 23.09.16)

Catch mur-347d

Species: Nephrops norvegicus , stock: nep-10
Norway lobster (Nephrops norvegicus) in Division 4.a, Functional Unit 10 (northern North Sea, Noup)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/nep-10.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1981-2015, abundance = None
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2005 expert
Prior final relative biomass $=0.01-0.2$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=0.479-7.66$
Results of CMSY analysis with altogether 2568 viable trajectories for 770 r -k pairs
$r=0.517,95 \% C L=0.347-0.77, k=1.83,95 \% C L=1.27-2.64$
MSY = 0.237, 95\% CL $=0.208-0.27$
Relative biomass last year $=0.0751 \mathrm{k}, 2.5 \mathrm{th}=0.014,97.5 \mathrm{th}=0.195$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.431$

Results for Management (based on CMSY analysis)
Fmsy $=0.258,95 \% C L=0.173-0.385$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0776,95 \% C L=0.0521-0.116$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=0.237,95 \%$ CL $=0.208-0.27$
Bmsy $=0.916$, 95\% CL $=0.635-1.32$
Biomass in last year $=0.138,2.5$ th perc $=0.0256,97.5$ perc $=0.357$
$\mathrm{B} /$ Bmsy in last year $=0.15,2.5$ th perc $=0.028,97.5$ perc $=0.39$
Fishing mortality in last year $=0.109,2.5$ th perc $=0.042,97.5$ perc $=0.586$
F/Fmsy $=1.41,2.5$ th perc $=0.541,97.5$ perc $=7.55$
Stock status and exploitation in 2014
Biomass $=0.133, \mathrm{~B} / \mathrm{Bmsy}=0.146$, fishing mortality $\mathrm{F}=0.112, \mathrm{~F} / \mathrm{Fmsy}=1.49$
Comment: OK (RF 23.09.16)

Year

B: Finding viable r-k

Exploitation rate

Year

C: Analysis of viable r-k

F: Equilibrium curve

Relative biomass B / k

Species: Nephrops norvegicus , stock: nep-3-4
Norway lobster in Division IIIa (Skagerrak and Kattegat)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/nep-3-4.pdf
Region: Northeast Atlantic, Greater North Sea
Catch data used from years 1991-2015, abundance = CPUE
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass= 0.01 - 0.4 in year 2003 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=13-207$
Prior range of $q=0.0841-0.337$

Results of CMSY analysis with altogether 1954 viable trajectories for 1242 r-k pairs
$r=0.561,95 \% C L=0.401-0.785, k=64.6,95 \% C L=41.7-100$
MSY = 9.07, 95\% CL = 7.27-11.3
Relative biomass last year $=0.419 \mathrm{k}, 2.5 \mathrm{th}=0.208,97.5$ th $=0.588$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.797$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.618,95 \% C L=0.416-0.918, \mathrm{k}=56.4,95 \% \mathrm{CL}=38.2-83.4$
MSY = 8.72, 95\% CL = 7.71-9.86
Relative biomass in last year $=0.446 \mathrm{k}, 2.5$ th perc $=0.272,97.5$ th perc $=0.633$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.564$
$\mathrm{q}=0.146, \mathrm{lcl}=0.108, \mathrm{ucl}=0.195$

Results for Management (based on BSM analysis)
Fmsy $=0.309,95 \% C L=0.208-0.459$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.309,95 \% C L=0.208-0.459$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=8.72,95 \% C L=7.71-9.86$
Bmsy $=28.2$, 95\% CL $=19.1$ - 41.7
Biomass in last year $=25.2,2.5$ th perc $=15.4,97.5$ perc $=35.7$
$B /$ Bmsy in last year $=0.892,2.5$ th perc $=0.544,97.5$ perc $=1.27$
Fishing mortality in last year $=0.174,2.5$ th perc $=0.123,97.5$ perc $=0.286$
F/Fmsy $=0.564,2.5$ th perc $=0.398,97.5$ perc $=0.925$

Stock status and exploitation in 2014
Biomass $=23.9$, $\mathrm{B} / \mathrm{Bmsy}=0.846$, fishing mortality $\mathrm{F}=0.252$, $\mathrm{F} / \mathrm{Fmsy}=0.814$
Comment: OK (RF 23.09.16)

B: Finding viable $r-k$

D: Biomass

Species: Nephrops norvegicus, stock: nep-32
Norway lobster in Division IVa, FU 32 (Northern North Sea, Norwegian Deep)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/nep-32.pdf
Region: Northeast Atlantic, Greater North Sea
Catch data used from years 1994-2015, abundance = CPUE
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass= $0.01-0.4$ in year 2010 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=1.44-23$
Prior range of $q=0.0586-0.235$

Results of CMSY analysis with altogether 1883 viable trajectories for 1109 r-k pairs
$r=0.513,95 \% C L=0.342-0.77, k=7.09,95 \% C L=4.61-10.9$
MSY $=0.91,95 \% \mathrm{CL}=0.699-1.18$
Relative biomass last year $=0.19 \mathrm{k}, 2.5 \mathrm{th}=0.014,97.5 \mathrm{th}=0.394$
Exploitation $F /(r / 2)$ in last year $=0.566$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.363,95 \% C L=0.252-0.523, k=9.38,95 \% C L=6.3-14$
MSY = 0.852, 95\% CL = 0.621-1.17
Relative biomass in last year $=0.204 \mathrm{k}, 2.5$ th perc $=0.135,97.5$ th perc $=0.324$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.553$
$\mathrm{q}=0.105, \mathrm{lcl}=0.0803, \mathrm{ucl}=0.138$

Results for Management (based on BSM analysis)
Fmsy $=0.182,95 \% C L=0.126-0.262$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.148,95 \% C L=0.103-0.213$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.852,95 \% C L=0.621-1.17$
Bmsy $=4.69$, 95\% CL $=3.15-6.99$
Biomass in last year $=1.91,2.5$ th perc $=1.27,97.5$ perc $=3.04$
$B /$ Bmsy in last year $=0.408,2.5$ th perc $=0.271,97.5$ perc $=0.648$
Fishing mortality in last year $=0.1,2.5$ th perc $=0.0631,97.5$ perc $=0.151$
F/Fmsy $=0.678,2.5$ th perc $=0.426,97.5$ perc $=1.02$

Stock status and exploitation in 2014
Biomass $=1.8, B / B m s y=0.384$, fishing mortality $F=0.114$, $\mathrm{F} / \mathrm{Fmsy}=0.817$
Comment: OK (RF 23.09.16)

D: Biomass

Year

E: Exploitation rate

Year

F: Equilibrium curve

Catch nep-32

Species: Nephrops norvegicus , stock: nep-33
Norway lobster (Nephrops norvegicus) in Division 4.b, Functional Unit 33 (central North Sea, Horn's Reef)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/nep-33.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1993-2015 , abundance $=$ None
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2006 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=1.6-25.7$
Results of CMSY analysis with altogether 1783 viable trajectories for 1229 r -k pairs
$r=0.568,95 \% \mathrm{CL}=0.411-0.785, \mathrm{k}=6.5,95 \% \mathrm{CL}=4.38-9.65$
MSY = 0.924, 95\% CL = 0.803-1.06
Relative biomass last year $=0.279 \mathrm{k}, 2.5 \mathrm{th}=0.203,97.5 \mathrm{th}=0.49$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2$

Results for Management (based on CMSY analysis)
Fmsy $=0.284,95 \% C L=0.206-0.393$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.284,95 \%$ CL $=0.206-0.393$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=0.924,95 \%$ CL $=0.803-1.06$
Bmsy $=3.25,95 \% \mathrm{CL}=2.19-4.82$
Biomass in last year $=1.82,2.5$ th perc $=1.32,97.5$ perc $=3.19$
$\mathrm{B} /$ Bmsy in last year $=0.558,2.5$ th perc $=0.407,97.5$ perc $=0.98$
Fishing mortality in last year $=0.553,2.5$ th perc $=0.315,97.5$ perc $=0.758$
F/Fmsy $=1.94,2.5$ th perc $=1.11,97.5$ perc $=2.67$
Stock status and exploitation in 2014
Biomass $=2.09, B /$ Bmsy $=0.642$, fishing mortality $\mathrm{F}=0.549, \mathrm{~F} / \mathrm{Fmsy}=1.93$
Comment: OK (RF 23.09.16)

Species: Nephrops norvegicus, stock: nep-34
Norway lobster in Division 4.b, Functional Unit 34 (central North Sea, Devil's Hole)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/nep-34.pdf
Region: Northeast Atlantic, Greater North Sea
Catch data used from years 1991-2015 , abundance $=$ None
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2010 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.2$ - 0.8 default , prior range for $k=1.29-20.7$

Results of CMSY analysis with altogether 8452 viable trajectories for 1113 r-k pairs
$r=0.561,95 \% C L=0.401-0.785, k=3.85,95 \% C L=2.49-5.96$
MSY $=0.541,95 \% C L=0.435-0.672$
Relative biomass last year $=0.258 \mathrm{k}, 2.5 \mathrm{th}=0.0221,97.5$ th $=0.394$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.05$

Results for Management (based on CMSY analysis)
Fmsy $=0.281,95 \% C L=0.201-0.392$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.281,95 \% C L=0.201-0.392$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=0.541,95 \% C L=0.435-0.672$
Bmsy $=1.93$, 95\% CL $=1.24-2.98$
Biomass in last year $=0.994,2.5$ th perc $=0.0852,97.5$ perc $=1.52$
B/Bmsy in last year $=0.516,2.5$ th perc $=0.0442,97.5$ perc $=0.789$
Fishing mortality in last year $=0.442,2.5$ th perc $=0.289,97.5$ perc $=5.16$
F/Fmsy $=1.57,2.5$ th perc $=1.03,97.5$ perc $=18.4$

Stock status and exploitation in 2014
Biomass $=0.957, \mathrm{~B} / \mathrm{Bmsy}=0.497$, fishing mortality $\mathrm{F}=0.334, \mathrm{~F} / \mathrm{Fmsy}=1.2$
Comment: OK (RF 23.09.16)

C: Analysis of viable r-k

E: Exploitation rate

Species: Nephrops norvegicus, stock: nep-5
Norway lobster in divisions 4.b and 4.c, Functional Unit 5 (central and southern North Sea, Botney Cut-Silver Pit)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/nep-5.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1991-2015, abundance $=$ None
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2010 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.2$ - 0.8 default , prior range for $k=2.51-40.1$

Results of CMSY analysis with altogether 9619 viable trajectories for 1218 r-k pairs
$r=0.566,95 \% C L=0.407-0.785, k=7.43,95 \% C L=4.93-11.2$
MSY = 1.05, 95\% CL = 0.893-1.24
Relative biomass last year $=0.493 \mathrm{k}, 2.5 \mathrm{th}=0.226,97.5 \mathrm{th}=0.595$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.93$

Results for Management (based on CMSY analysis)
Fmsy $=0.283,95 \% C L=0.204-0.392$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.283,95 \% C L=0.204-0.392$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=1.05,95 \% \mathrm{CL}=0.893-1.24$
Bmsy $=3.72$, 95\% CL $=2.46-5.61$
Biomass in last year $=3.67,2.5$ th perc $=1.68,97.5$ perc $=4.42$
$B /$ Bmsy in last year $=0.987,2.5$ th perc $=0.451,97.5$ perc $=1.19$
Fishing mortality in last year $=0.968,2.5$ th perc $=0.804,97.5$ perc $=2.12$
F/Fmsy $=3.42,2.5$ th perc $=2.84,97.5$ perc $=7.49$

Stock status and exploitation in 2014
Biomass $=3.87, B / B m s y=1.04$, fishing mortality $F=0.366, F / F m s y=1.29$
Comment: OK (RF 23.09.16)

D: Biomass

Exploitation

B: Finding viable $r-k$

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Biomass

Species: Nephrops norvegicus, stock: nep-6
Norway lobster in Division IVa, FU 7 (Northern North Sea, Fladen Ground)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/nep-6.pdf
Region: Northeast Atlantic, Greater North Sea
Catch data used from years 2000-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= $0.01-0.4$ in year 2007 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.2$ - 0.8 default , prior range for $k=5.59-89.5$
Prior range of $q=0.0768-0.307$

Results of CMSY analysis with altogether 2465 viable trajectories for 1533 r-k pairs
$r=0.535,95 \% C L=0.376-0.762, k=28.1,95 \% C L=15.6-50.8$
MSY = 3.76, 95\% CL = 2.19-6.48
Relative biomass last year $=0.19 \mathrm{k}, 2.5$ th $=0.0224,97.5$ th $=0.298$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.79$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.53,95 \% \mathrm{CL}=0.388-0.723, \mathrm{k}=25.1,95 \% \mathrm{CL}=18.6-33.8$
MSY = 3.32, 95\% CL = 2.79-3.96
Relative biomass in last year $=0.184 \mathrm{k}, 2.5$ th perc $=0.129,97.5$ th perc $=0.259$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.28$
$q=0.128, \mathrm{lcl}=0.0992, \mathrm{ucl}=0.166$

Results for Management (based on BSM analysis)
Fmsy $=0.265,95 \% C L=0.194-0.361$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.195,95 \% C L=0.143-0.266$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 3.32, 95\% CL = 2.79-3.96
Bmsy $=12.5$, 95\% CL $=9.32-16.9$
Biomass in last year $=4.61,2.5$ th perc $=3.23,97.5$ perc $=6.49$
$B /$ Bmsy in last year $=0.367,2.5$ th perc $=0.258,97.5$ perc $=0.517$
Fishing mortality in last year $=0.338,2.5$ th perc $=0.24,97.5$ perc $=0.483$
F/Fmsy $=1.74,2.5$ th perc $=1.24,97.5$ perc $=2.48$

Stock status and exploitation in 2014
Biomass $=5.6, \mathrm{~B} / \mathrm{Bmsy}=0.446$, fishing mortality $\mathrm{F}=0.483, \mathrm{~F} / \mathrm{Fmsy}=2.04$
Comment: OK (RF 23.09.16)

D: Biomass

Catch nep-6

Exploitation

E: Exploitation rate

F: Equilibrium curve

Species: Nephrops norvegicus, stock: nep-7
Norway lobster in Division IVa, FU 7 (Northern North Sea, Fladen Ground)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/nep-7.pdf
Region: Northeast Atlantic, Greater North Sea
Catch data used from years 2004-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= $0.01-0.4$ in year 2011 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.2$ - 0.8 default , prior range for $k=16.1-257$
Prior range of $q=0.0896-0.359$

Results of CMSY analysis with altogether 5156 viable trajectories for 2611 r-k pairs
$r=0.566,95 \% C L=0.407-0.785, k=78.3,95 \% C L=43.4-141$
MSY = 11.1, 95\% CL = 6.64-18.4
Relative biomass last year $=0.15 \mathrm{k}, 2.5 \mathrm{th}=0.0168,97.5$ th $=0.294$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.89$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.481,95 \% C L=0.332-0.696, k=80.3,95 \% C L=57.1-113$
MSY = 9.66 , 95\% CL = 7.67-12.2
Relative biomass in last year $=0.201 \mathrm{k}, 2.5$ th perc $=0.134,97.5$ th perc $=0.295$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.459$
$\mathrm{q}=0.173, \mathrm{lcl}=0.132, \mathrm{ucl}=0.228$

Results for Management (based on BSM analysis)
Fmsy $=0.24,95 \% C L=0.166-0.348$ (if $B>1 / 2$ Bmsy then $\mathrm{Fmsy}=0.5 r$)
Fmsy $=0.194,95 \% C L=0.134-0.28$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 9.66, 95\% CL = 7.67-12.2
Bmsy $=40.2$, 95\% CL $=28.5-56.5$
Biomass in last year $=16.2,2.5$ th perc $=10.8,97.5$ perc $=23.7$
$B /$ Bmsy in last year $=0.403,2.5$ th perc $=0.269,97.5$ perc $=0.59$
Fishing mortality in last year $=0.11,2.5$ th perc $=0.0754,97.5$ perc $=0.166$
F/Fmsy $=0.571,2.5$ th perc $=0.39,97.5$ perc $=0.855$

Stock status and exploitation in 2014
Biomass $=15.6, B / B m s y=0.39$, fishing mortality $F=0.265, F / F m s y=1.42$
Comment: OK (RF 23.09.16)

D: Biomass

E: Exploitation rate

Species: Nephrops norvegicus , stock: nep-8
Norway lobster in Division IVb, FU 8 (Central North Sea, Firth of Forth)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/nep-8.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1994-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.3-0.7 in year 2008 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=3.23-51.8$
Prior range of $q=0.0577-0.231$
Results of CMSY analysis with altogether 3192 viable trajectories for 1437 r -k pairs
$r=0.561,95 \% C L=0.401-0.785, k=15.7,95 \% C L=10.3-24.1$
MSY = 2.21,95\% CL = 1.82-2.68
Relative biomass last year $=0.506 \mathrm{k}, 2.5 \mathrm{th}=0.236,97.5 \mathrm{th}=0.597$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=0.862$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.723,95 \% \mathrm{CL}=0.533-0.98, \mathrm{k}=12.2,95 \% \mathrm{CL}=8.98-16.6$
$\mathrm{MSY}=2.21,95 \% \mathrm{CL}=2-2.43$
Relative biomass in last year $=0.536 \mathrm{k}, 2.5$ th perc $=0.38,97.5$ th perc $=0.656$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.801$
$q=0.0955, \mathrm{lcl}=0.0727$, ucl $=0.125$
Results for Management (based on BSM analysis)
Fmsy $=0.362,95 \% C L=0.267-0.49$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.362,95 \% C L=0.267-0.49$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 2.21, 95\% CL = 2-2.43
Bmsy $=6.1,95 \% \mathrm{CL}=4.49-8.29$
Biomass in last year $=6.54,2.5$ th perc $=4.64,97.5$ perc $=8.01$
$\mathrm{B} /$ Bmsy in last year $=1.07,2.5$ th perc $=0.761,97.5$ perc $=1.31$
Fishing mortality in last year $=0.289,2.5$ th perc $=0.236,97.5$ perc $=0.408$
F/Fmsy $=0.801,2.5$ th perc $=0.653,97.5$ perc $=1.13$
Stock status and exploitation in 2014
Biomass $=6.29, \mathrm{~B} / \mathrm{Bmsy}=1.03$, fishing mortality $\mathrm{F}=0.379, \mathrm{~F} / \mathrm{Fmsy}=1.05$
Comment: OK (RF 23.09.16) Abundance data before 2003 read off graph; early landings not reliable; start year set to 1993.

Species: Nephrops norvegicus , stock: nep-9
Norway lobster in Division IVb, FU 9 (Central North Sea, Moray Firth)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/nep-9.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1993-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.3-0.7 in year 2005 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=2.26-36.2$
Prior range of $q=0.0593-0.237$
Results of CMSY analysis with altogether 1871 viable trajectories for 965 r-k pairs
$r=0.537,95 \% \mathrm{CL}=0.37-0.778, \mathrm{k}=10.4,95 \% \mathrm{CL}=6.97-15.4$
MSY = 1.39, 95\% CL = 1.18-1.64
Relative biomass last year $=0.296 \mathrm{k}, 2.5 \mathrm{th}=0.025,97.5 \mathrm{th}=0.397$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.11$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.525,95 \% \mathrm{CL}=0.387-0.712, \mathrm{k}=10.8,95 \% \mathrm{CL}=7.84-14.8$
MSY = 1.41, 95\% CL = 1.23-1.62
Relative biomass in last year $=0.359 \mathrm{k}$, 2.5th perc $=0.229,97.5$ th perc $=0.465$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.82$
$\mathrm{q}=0.107, \mathrm{lcl}=0.0815, \mathrm{ucl}=0.14$
Results for Management (based on BSM analysis)
Fmsy $=0.262,95 \% C L=0.193-0.356$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.262,95 \% C L=0.193-0.356$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 1.41, 95\% CL = 1.23-1.62
Bmsy $=5.38,95 \% \mathrm{CL}=3.92-7.39$
Biomass in last year $=3.86,2.5$ th perc $=2.46,97.5$ perc $=5.01$
$\mathrm{B} /$ Bmsy in last year $=0.717,2.5$ th perc $=0.458,97.5$ perc $=0.931$
Fishing mortality in last year $=0.215,2.5$ th perc $=0.166,97.5$ perc $=0.337$
F/Fmsy $=0.82,2.5$ th perc $=0.631,97.5$ perc $=1.28$
Stock status and exploitation in 2014
Biomass $=3.6, \mathrm{~B} /$ Bmsy $=0.668$, fishing mortality $\mathrm{F}=0.348, \mathrm{~F} / \mathrm{Fmsy}=1.33$
Comment: OK (RF 23.09.16)

D: Biomass

E: Exploitation rate

Biomass

Species: Trisopterus esmarkii , stock: nop-34-oct
Norway Pout in Subarea IV (North S.) and IIla (Skagerrak - Kattegat)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/nop-34-oct.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1995-2014 , abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= $0.01-0.3$ in year 2005 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.48-1.6$ expert, , prior range for $k=148-1973$
Prior range of $q=0.962-3.51$
Results of CMSY analysis with altogether 372 viable trajectories for 367 r-k pairs
$r=0.885,95 \%$ CL $=0.593-1.32, k=1293,95 \% C L=782-2136$
MSY = 286,95\% CL = 160-509
Relative biomass last year $=0.146 \mathrm{k}, 2.5 \mathrm{th}=0.0143,97.5 \mathrm{th}=0.387$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=0.611$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.901,95 \% \mathrm{CL}=0.732-1.11, \mathrm{k}=906,95 \% \mathrm{CL}=702-1168$
MSY = 204, 95\% CL = 149-279
Relative biomass in last year $=0.16 \mathrm{k}, 2.5$ th perc $=0.0822,97.5$ th perc $=0.317$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.679$
$q=1.41, \mathrm{lcl}=1.16$, ucl = 1.73
Results for Management (based on BSM analysis)
Fmsy $=0.45,95 \% C L=0.366-0.554$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.288,95 \% C L=0.234-0.354$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 204, 95\% CL = 149-279
Bmsy $=453$, 95% CL $=351-584$
Biomass in last year $=145,2.5$ th perc $=74.4,97.5$ perc $=287$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.32,2.5$ th perc $=0.164,97.5$ perc $=0.635$
Fishing mortality in last year $=0.306,2.5$ th perc $=0.154,97.5$ perc $=0.594$
F/Fmsy $=1.06,2.5$ th perc $=0.534,97.5$ perc $=2.06$
Stock status and exploitation in 2014
Biomass $=145, \mathrm{~B} /$ Bmsy $=0.32$, fishing mortality $\mathrm{F}=0.306, \mathrm{~F} / \mathrm{Fmsy}=1.06$
Comment: OK (RF 23.09.16)

D: Biomass

Catch nop-34-oct

Exploitation

E: Exploitation rate

Species: Pandalus borealis , stock: pand-sknd
Northern shrimp in Divisions 3a and 4a East (Skagerrak, Northern North Sea in the Norwegian Deep)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/pand-
sknd_2015update.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1988-2014 , abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2008 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $\mathrm{r}=0.2-0.8$ default , prior range for $\mathrm{k}=18.6-298$
Prior range of $q=0.253-1.01$
Results of CMSY analysis with altogether 2191 viable trajectories for 1565 r -k pairs
$r=0.566,95 \% \mathrm{CL}=0.407-0.785, \mathrm{k}=95.8,95 \% \mathrm{CL}=64-143$
MSY = 13.5, 95\% CL = 11.7-15.7
Relative biomass last year $=0.283 \mathrm{k}, 2.5 \mathrm{th}=0.0313,97.5 \mathrm{th}=0.397$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.33$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.618,95 \% \mathrm{CL}=0.43-0.89, \mathrm{k}=82.6,95 \% \mathrm{CL}=58.9-116$
MSY = 12.8, 95\% CL = 10.2-16
Relative biomass in last year $=0.212 \mathrm{k}, 2.5$ th perc $=0.142,97.5$ th perc $=0.275$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.28$
$\mathrm{q}=0.408, \mathrm{lcl}=0.311, u c \mathrm{l}=0.534$
Results for Management (based on BSM analysis)
Fmsy $=0.309,95 \% C L=0.215-0.445$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.262,95 \% C L=0.182-0.377$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 12.8, 95\% CL = 10.2-16
Bmsy $=41.3$, 95% CL $=29.4-58$
Biomass in last year $=17.5,2.5$ th perc $=11.8,97.5$ perc $=22.7$
$\mathrm{B} /$ Bmsy in last year $=0.424,2.5$ th perc $=0.284,97.5$ perc $=0.55$
Fishing mortality in last year $=0.704,2.5$ th perc $=0.543,97.5$ perc $=1.05$
F/Fmsy $=2.69,2.5$ th perc $=2.07,97.5$ perc $=4.01$
Stock status and exploitation in 2014
Biomass $=17.5, \mathrm{~B} / \mathrm{Bmsy}=0.424$, fishing mortality $\mathrm{F}=0.704, \mathrm{~F} / \mathrm{Fmsy}=2.69$
Comment: OK (RF 23.09.16)

D: Biomass

Year

E: Exploitation rate

F: Equilibrium curve

Exploitation

Species: Pleuronectes platessa, stock: ple-eche Plaice in Division VIId (Eastern Channel)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/ple-eche.pdf Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1985-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01 - 0.4 in year 2005 default
Prior final relative biomass $=0.5-0.9$, default
Prior range for $r=0.2-0.77$ expert, , prior range for $k=21.8-503$
Prior range of $q=0.521-2.05$
Results of CMSY analysis with altogether 2013 viable trajectories for 1777 r-k pairs
$r=0.537,95 \%$ CL $=0.385-0.747, \mathrm{k}=73.6,95 \% \mathrm{CL}=29.5-184$
MSY = 9.87, 95\% CL = 3.03-32.2
Relative biomass last year $=0.651 \mathrm{k}, 2.5 \mathrm{th}=0.516,97.5 \mathrm{th}=0.854$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=0.475$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.56,95 \% \mathrm{CL}=0.418-0.75, \mathrm{k}=88.7,95 \% \mathrm{CL}=60.6-130$
MSY = 12.4, 95\% CL = 8.55-18
Relative biomass in last year $=0.853 \mathrm{k}$, 2.5th perc $=0.644,97.5$ th perc $=0.984$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.273$
$\mathrm{q}=0.725$, $\mathrm{lcl}=0.558$, ucl $=0.941$
Results for Management (based on BSM analysis)
Fmsy $=0.28,95 \% C L=0.209-0.375$ (if B > 1/2 Bmsy then Fmsy $=0.5$ r)
Fmsy $=0.28,95 \% C L=0.209-0.375$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 12.4, 95% CL = $8.55-18$
Bmsy $=44.4,95 \%$ CL $=30.3-64.9$
Biomass in last year $=75.7,2.5$ th perc $=57.2,97.5$ perc $=87.3$
$B /$ Bmsy in last year $=1.71,2.5$ th perc $=1.29,97.5$ perc $=1.97$
Fishing mortality in last year $=0.0764,2.5$ th perc $=0.0663,97.5$ perc $=0.101$
F/Fmsy $=0.273,2.5$ th perc $=0.237,97.5$ perc $=0.362$
Stock status and exploitation in 2014
Biomass $=77.1, \mathrm{~B} / \mathrm{Bmsy}=1.74$, fishing mortality $\mathrm{F}=0.0796, \mathrm{~F} / \mathrm{Fmsy}=0.284$
Comment: OK (RF 23.09.16) r updated

D: Biomass

Year

E: Exploitation rate

Year

F: Equilibrium curve

Species: Pleuronectes platessa, stock: ple-nsea
Plaice Subarea IV (North Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/ple-nsea.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1960-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2000 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.2-0.77$ expert, , prior range for $k=860-19862$
Prior range of $q=0.146-0.573$
Results of CMSY analysis with altogether 1377 viable trajectories for 486 r -k pairs
$r=0.533,95 \% C L=0.38-0.747, k=1602,95 \% C L=1111-2310$
MSY = 213, 95\% CL = 191-239
Relative biomass last year $=0.786 \mathrm{k}, 2.5 \mathrm{th}=0.592,97.5 \mathrm{th}=0.842$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.392$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.274,95 \% C L=0.211-0.356, k=3088,95 \% C L=2314-4120$
MSY = 212, 95% CL = 178-252
Relative biomass in last year $=0.871 \mathrm{k}$, 2.5th perc $=0.701,97.5$ th perc $=0.987$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.365$
$\mathrm{q}=0.28, \mathrm{lcl}=0.22$, ucl $=0.356$
Results for Management (based on BSM analysis)
Fmsy $=0.137,95 \% C L=0.106-0.178$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.137,95 \% C L=0.106-0.178$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 212, 95\% CL = 178-252
Bmsy $=1544,95 \%$ CL = 1157-2060
Biomass in last year $=2689,2.5$ th perc $=2163,97.5$ perc $=3049$
$\mathrm{B} /$ Bmsy in last year $=1.74,2.5$ th perc $=1.4,97.5$ perc $=1.97$
Fishing mortality in last year $=0.05,2.5$ th perc $=0.0441,97.5$ perc $=0.0622$
F/Fmsy $=0.365,2.5$ th perc $=0.322,97.5$ perc $=0.454$
Stock status and exploitation in 2014
Biomass $=2671, \mathrm{~B} /$ Bmsy $=1.73$, fishing mortality $\mathrm{F}=0.05$, $\mathrm{F} / \mathrm{Fmsy}=0.365$
Comment: OK (RF 23.09.16)

B: Finding viable r-k

C: Analysis of viable r-k

D: Biomass

Exploitation

E: Exploitation rate

F: Equilibrium curve

Species: Pollachius pollachius , stock: pol-nsea
Pollack in Subarea 4 (North Sea) and Division 3.a (North Sea, Skagerrak and Kattegat)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/pol-nsea.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1977-2015 , abundance = None
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2000 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.5-1$ expert, , prior range for $k=6-48$
Results of CMSY analysis with altogether 14 viable trajectories for $14 \mathrm{r}-\mathrm{k}$ pairs
$r=0.613,95 \% C L=0.57-0.659, k=27.6,95 \% \mathrm{CL}=24.5-31$
MSY = 4.23, 95\% CL = 3.79-4.71
Relative biomass last year $=0.196 \mathrm{k}, 2.5 \mathrm{th}=0.112,97.5 \mathrm{th}=0.315$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.02$

Results for Management (based on CMSY analysis)
Fmsy $=0.306,95 \% C L=0.285-0.329$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.24,95 \% C L=0.223-0.258$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 4.23, 95\% CL = 3.79-4.71
Bmsy $=13.8,95 \%$ CL = 12.3-15.5
Biomass in last year $=5.4,2.5$ th perc $=3.09,97.5$ perc $=8.7$
$\mathrm{B} /$ Bmsy in last year $=0.392,2.5$ th perc $=0.224,97.5$ perc $=0.63$
Fishing mortality in last year $=0.366,2.5$ th perc $=0.228,97.5$ perc $=0.641$
F/Fmsy $=1.53,2.5$ th perc $=0.949,97.5$ perc $=2.67$
Stock status and exploitation in 2014
Biomass $=5.81, \mathrm{~B} /$ Bmsy $=0.421$, fishing mortality $\mathrm{F}=0.275, \mathrm{~F} / \mathrm{Fmsy}=1.07$
Comment: OK (RF 23.09.16)

B: Finding viable r-k

C: Analysis of viable r-k

D: Biomass

Year

F: Equilibrium curve

Species: Coryphaenoides rupestris , stock: rng-kask
Roundnose grenadier in Division 3.a (Skagerrak and Kattegat)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/rng-kask.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1988-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2003 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.11-0.71$ expert, , prior range for $k=12.3-318$
Prior range of $q=0.00789-0.0401$
Results of CMSY analysis with altogether 3506 viable trajectories for 2333 r -k pairs
$r=0.381,95 \% \mathrm{CL}=0.233-0.624, \mathrm{k}=36.4,95 \% \mathrm{CL}=19.2-69.3$
MSY = 3.47, 95\% CL = 2.13-5.65
Relative biomass last year $=0.0984 \mathrm{k}, 2.5 \mathrm{th}=0.0139,97.5 \mathrm{th}=0.286$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.00146$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.381,95 \% \mathrm{CL}=0.251-0.579, \mathrm{k}=56.6,95 \% \mathrm{CL}=35.5-90.2$
MSY = 5.4, 95\% CL = 3.07-9.48
Relative biomass in last year $=0.0546 \mathrm{k}$, 2.5th perc $=0.0284$, 97.5 th perc $=0.105$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.0017$
$\mathrm{q}=0.0124, \mathrm{lcl}=0.00898, \mathrm{ucl}=0.0171$
Results for Management (based on BSM analysis)
Fmsy $=0.191,95 \% \mathrm{CL}=0.126-0.289$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0417,95 \% C L=0.0274-0.0633$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 5.4, 95\% CL = 3.07-9.48
Bmsy = 28.3, 95\% CL = 17.8-45.1
Biomass in last year $=3.09,2.5$ th perc $=1.61,97.5$ perc $=5.97$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.109,2.5$ th perc $=0.0567,97.5$ perc $=0.211$
Fishing mortality in last year $=0.000323,2.5$ th perc $=0.000168,97.5$ perc $=0.000623$
F/Fmsy $=0.00776,2.5$ th perc $=0.00402,97.5$ perc $=0.015$
Stock status and exploitation in 2014
Biomass $=2.92, \mathrm{~B} / \mathrm{Bmsy}=0.103$, fishing mortality $\mathrm{F}=0.000342$, $\mathrm{F} / \mathrm{Fmsy}=0.0087$
Comment: OK (RF 23.09.16)

B : Finding viable $\mathrm{r}-\mathrm{k}$

E: Exploitation rate

Year

C: Analysis of viable r-k

D: Biomass

Year

Catch rng-kas

Species: Pollachius virens , stock: sai-3a46
Saithe in Subarea IV (North Sea) Division Illa West and Subarea VI
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sai-3a46.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1967-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 1990 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.21-0.75$ expert, , prior range for $k=473-6762$
Prior range of $q=0.411-1.55$
Results of CMSY analysis with altogether 343 viable trajectories for 327 r -k pairs
$r=0.325,95 \% \mathrm{CL}=0.282-0.374, \mathrm{k}=2671,95 \% \mathrm{CL}=2076-3435$
MSY = 217, 95\% CL = 175-269
Relative biomass last year $=0.165 \mathrm{k}, 2.5 \mathrm{th}=0.0145,97.5 \mathrm{th}=0.393$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.18$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.521,95 \% \mathrm{CL}=0.409-0.663, \mathrm{k}=1548,95 \% \mathrm{CL}=1256-1908$
MSY = 202, 95\% CL = 174-234
Relative biomass in last year $=0.392 \mathrm{k}$, 2.5th perc $=0.343,97.5$ th perc $=0.441$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.526$
$\mathrm{q}=0.379$, $\mathrm{lcl}=0.311$, ucl $=0.464$
Results for Management (based on BSM analysis)
Fmsy $=0.26,95 \% C L=0.205-0.332$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.26,95 \% C L=0.205-0.332$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=202$, 95% CL = 174-234
Bmsy = 774, 95\% CL = 628-954
Biomass in last year $=607,2.5$ th perc $=530,97.5$ perc $=682$
$\mathrm{B} /$ Bmsy in last year $=0.785,2.5$ th perc $=0.685,97.5$ perc $=0.882$
Fishing mortality in last year $=0.137,2.5$ th perc $=0.122,97.5$ perc $=0.157$
F/Fmsy $=0.526,2.5$ th perc $=0.469,97.5$ perc $=0.603$
Stock status and exploitation in 2014
Biomass $=551, \mathrm{~B} /$ Bmsy $=0.712$, fishing mortality $\mathrm{F}=0.148$, $\mathrm{F} / \mathrm{Fmsy}=0.57$
Comment: OK (RF 23.09.16)

F: Equilibrium curve

Species: Ammodytes tobianus, stock: san-ns1
Sandeel in the Dogger Bank area (SA 1)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/san-ns1.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1983-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2004 default
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.8-2$ expert, , prior range for $k=235-2323$
Prior range of $q=0.609-1.92$
Results of CMSY analysis with altogether 19 viable trajectories for $19 \mathrm{r}-\mathrm{k}$ pairs
$r=1.06,95 \% \mathrm{CL}=0.698-1.6, \mathrm{k}=1418,95 \% \mathrm{CL}=1157-1739$
MSY $=375,95 \%$ CL $=300-467$
Relative biomass last year $=0.138 \mathrm{k}, 2.5 \mathrm{th}=0.044,97.5 \mathrm{th}=0.232$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.45$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.954,95 \% C L=0.869-1.05, k=1592,95 \% C L=1404-1806$
MSY = 380, 95\% CL = 344-420
Relative biomass in last year $=0.199 \mathrm{k}, 2.5$ th perc $=0.111,97.5$ th perc $=0.33$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.07$
$\mathrm{q}=0.638, \mathrm{lcl}=0.53$, ucl $=0.769$
Results for Management (based on BSM analysis)
Fmsy $=0.477,95 \% C L=0.435-0.524$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.38,95 \% C L=0.346-0.417$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 380, 95\% CL = 344-420
Bmsy = 796, 95\% CL = 702-903
Biomass in last year $=317,2.5$ th perc $=177,97.5$ perc $=526$
$\mathrm{B} /$ Bmsy in last year $=0.399,2.5$ th perc $=0.223,97.5$ perc $=0.661$
Fishing mortality in last year $=0.511,2.5$ th perc $=0.308,97.5$ perc $=0.915$
F/Fmsy $=1.34,2.5$ th perc $=0.81,97.5$ perc $=2.41$
Stock status and exploitation in 2014
Biomass $=277, B /$ Bmsy $=0.348$, fishing mortality $\mathrm{F}=0.286$, $\mathrm{F} / \mathrm{Fmsy}=0.862$
Comment: OK (RF 23.09.16)

E: Exploitation rate

Species: Ammodytes tobianus, stock: san-ns3
Sandeel in the Central Eastern North Sea (SA 3)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/san-ns3.pdf
Region: Northeast Atlantic, Greater North Sea
Catch data used from years 1983-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01 - 0.3 in year 2005 expert
Prior final relative biomass $=0.2$ - 0.6 expert
Prior range for $r=0.8-2$ expert, , prior range for $k=227-2251$
Prior range of $q=0.394-1.24$

Results of CMSY analysis with altogether 32 viable trajectories for 32 r-k pairs
$r=1.11,95 \% C L=0.935-1.32, k=1257,95 \% C L=1043-1514$
MSY = 349, 95\% CL = 307-397
Relative biomass last year $=0.425 \mathrm{k}, 2.5 \mathrm{th}=0.222,97.5$ th $=0.583$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.327$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.998,95 \% C L=0.91-1.09, k=1309,95 \% C L=1170-1464$
MSY = 326, 95\% CL = 302-353
Relative biomass in last year $=0.358 \mathrm{k}, 2.5$ th perc $=0.192$, 97.5 th perc $=0.62$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.507$
$\mathrm{q}=0.427, \mathrm{lcl}=0.355, \mathrm{ucl}=0.514$

Results for Management (based on BSM analysis)
Fmsy $=0.499,95 \% C L=0.455-0.547$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.499,95 \% C L=0.455-0.547$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 326, 95\% CL = 302-353
Bmsy $=654$, 95\% CL $=585-732$
Biomass in last year $=469,2.5$ th perc $=251,97.5$ perc $=811$
$B /$ Bmsy in last year $=0.716,2.5$ th perc $=0.384,97.5$ perc $=1.24$
Fishing mortality in last year $=0.253,2.5$ th perc $=0.146,97.5$ perc $=0.472$
F/Fmsy $=0.507,2.5$ th perc $=0.293,97.5$ perc $=0.946$

Stock status and exploitation in 2014
Biomass $=313, \mathrm{~B} / \mathrm{Bmsy}=0.478$, fishing mortality $\mathrm{F}=0.427, F / F m s y=0.895$
Comment: OK (RF 23.09.16)

Species: Ammodytes tobianus, stock: san-ns4
Sandeel in Divisions 4a and 4b, SA 4 (North and Central North Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/san-ns4.pdf
Region: Northeast Atlantic, Greater North Sea
Catch data used from years 1983-2015, abundance $=$ CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.8-2$ expert, , prior range for $k=62.3-616$
Prior range of $q=2.25 e-05-7.07 e-05$

Results of CMSY analysis with altogether 214 viable trajectories for 210 r-k pairs
$r=1.19,95 \% C L=0.83-1.72, k=295,95 \% C L=231-376$
MSY = 88, 95\% CL = 71.7-108
Relative biomass last year $=0.0872 \mathrm{k}, 2.5 \mathrm{th}=0.0142,97.5 \mathrm{th}=0.285$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.305$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.874,95 \% C L=0.75-1.02, k=358,95 \% C L=322-398$
MSY = 78.2, 95\% CL = 71.5-85.6
Relative biomass in last year $=0.0448 \mathrm{k}, 2.5$ th perc $=0.0174,97.5$ th perc $=0.127$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.626$
$\mathrm{q}=3.52 \mathrm{e}-05, \mathrm{lc\mid}=2.73 \mathrm{e}-05, \mathrm{ucl}=4.55 \mathrm{e}-05$

Results for Management (based on BSM analysis)
Fmsy $=0.437,95 \% C L=0.375-0.51$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0782,95 \% C L=0.0671-0.0912$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=78.2,95 \% C L=71.5-85.6$
Bmsy $=179$, 95\% CL = 161-199
Biomass in last year $=16,2.5$ th perc $=6.23,97.5$ perc $=45.4$
$B /$ Bmsy in last year $=0.0895,2.5$ th perc $=0.0348,97.5$ perc $=0.253$
Fishing mortality in last year $=0.274,2.5$ th perc $=0.0967,97.5$ perc $=0.704$
F/Fmsy $=3.5,2.5$ th perc $=1.24,97.5$ perc $=9$
Stock status and exploitation in 2014
Biomass $=17.3$, $\mathrm{B} / \mathrm{Bmsy}=0.0967$, fishing mortality $\mathrm{F}=0.255$, $\mathrm{F} / \mathrm{Fmsy}=3.02$
Comment: OK (RF 23.09.16) r updated

Species: Ammodytes tobianus , stock: san-ns6
Sandeel in Division 3a East, SA 6 (Kattegat)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/san-ns6.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1983-2015, abundance $=$ None
Prior initial relative biomass $=0.5-0.99$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.8-2$ expert, , prior range for $k=2.11-20.9$
Results of CMSY analysis with altogether 13 viable trajectories for $13 \mathrm{r}-\mathrm{k}$ pairs
$r=0.99,95 \% \mathrm{CL}=0.953-1.03, \mathrm{k}=9.61,95 \% \mathrm{CL}=8.52-10.9$
MSY = 2.38, 95\% CL = 2.02-2.8
Relative biomass last year $=0.142 \mathrm{k}, 2.5 \mathrm{th}=0.0228,97.5 \mathrm{th}=0.285$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.196$

Results for Management (based on CMSY analysis)
Fmsy $=0.495,95 \% \mathrm{CL}=0.477-0.514$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.281,95 \% C L=0.271-0.292$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 2.38, 95\% CL = 2.02-2.8
Bmsy $=4.81,95 \%$ CL $=4.26-5.43$
Biomass in last year $=1.36,2.5$ th perc $=0.219,97.5$ perc $=2.74$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.284,2.5$ th perc $=0.0455,97.5$ perc $=0.569$
Fishing mortality in last year $=0.168,2.5$ th perc $=0.0837,97.5$ perc $=1.05$
F/Fmsy $=0.597,2.5$ th perc $=0.298,97.5$ perc $=3.72$
Stock status and exploitation in 2014
Biomass $=1.06, \mathrm{~B} /$ Bmsy $=0.221$, fishing mortality $\mathrm{F}=0.0743, \mathrm{~F} / \mathrm{Fmsy}=0.34$
Comment: OK (RF 23.09.16)

E: Exploitation rate

Year

F: Equilibrium curve

Exploitation

Species: Ammodytes tobianus, stock: san-ns7
Sandeel in Division 4a, SA 7 (Northern North Sea, Shetland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/san-ns7.pdf
Region: Northeast Atlantic, Greater North Sea
Catch data used from years 1983-2015 , abundance $=$ None
Prior initial relative biomass $=0.5-0.99$ expert
Prior intermediate rel. biomass= 0.01 - 0.4 in year 2000 expert
Prior final relative biomass $=0.01-0.2$ expert
Prior range for $r=0.8-2$ expert, , prior range for $k=2.33-23.1$

Results of CMSY analysis with altogether 248 viable trajectories for 247 r-k pairs
$r=1.54,95 \% C L=1.22-1.96, k=7.88,95 \% C L=5.43-11.4$
MSY = 3.04, 95\% CL = 2.26-4.11
Relative biomass last year $=0.0597 \mathrm{k}, 2.5 \mathrm{th}=0.0206,97.5 \mathrm{th}=0.189$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0$

Results for Management (based on CMSY analysis)
Fmsy $=0.772,95 \% C L=0.608-0.982$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.185,95 \% C L=0.145-0.235$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=3.04,95 \% C L=2.26-4.11$
Bmsy $=3.94,95 \% \mathrm{CL}=2.71-5.72$
Biomass in last year $=0.471,2.5$ th perc $=0.162,97.5$ perc $=1.49$
$B /$ Bmsy in last year $=0.119,2.5$ th perc $=0.0412,97.5$ perc $=0.378$
Fishing mortality in last year $=0,2.5$ th perc $=0,97.5$ perc $=0$
F/Fmsy $=0,2.5$ th perc $=0,97.5$ perc $=0$

Stock status and exploitation in 2014
Biomass $=0.364$, $\mathrm{B} / \mathrm{Bmsy}=0.0925$, fishing mortality $\mathrm{F}=0, \mathrm{~F} / \mathrm{Fmsy}=0$
Comment: OK (RF 23.09.16) Catch data read from graph partially.

B: Finding viable r-k

$\begin{array}{lllllll}0.8 & 1.0 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0\end{array}$
Year

C: Analysis of viable r-k

Equilibrium curve

Year
Catch san-ns

E: Exploitation rate

Year

Species: Solea solea, stock: sol-eche
Sole in Division VIId (Eastern Channel)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sol-eche.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1982-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.2-0.6 in year 2001 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.21-1$ expert, , prior range for $k=4.89-94.9$
Prior range of $q=0.538-2.37$
Results of CMSY analysis with altogether 3483 viable trajectories for 944 r-k pairs
$r=0.68,95 \% \mathrm{CL}=0.468-0.99, \mathrm{k}=26,95 \% \mathrm{CL}=16.7-40.4$
MSY = 4.42, 95\% CL = 3.89-5.03
Relative biomass last year $=0.449 \mathrm{k}, 2.5 \mathrm{th}=0.222,97.5 \mathrm{th}=0.588$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.05$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.822,95 \% \mathrm{CL}=0.564-1.2, \mathrm{k}=21.7,95 \% \mathrm{CL}=15.3-30.6$
MSY = 4.45, 95\% CL = 3.95-5.01
Relative biomass in last year $=0.475 \mathrm{k}, 2.5$ th perc $=0.34,97.5$ th perc $=0.608$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.814$
$\mathrm{q}=0.872, \mathrm{lcl}=0.645, \mathrm{ucl}=1.18$
Results for Management (based on BSM analysis)
Fmsy $=0.411,95 \% \mathrm{CL}=0.282-0.599$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.411,95 \% C L=0.282-0.599$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=4.45,95 \%$ CL $=3.95-5.01$
Bmsy $=10.8$, 95\% CL $=7.66-15.3$
Biomass in last year $=10.3,2.5$ th perc $=7.35,97.5$ perc $=13.2$
$\mathrm{B} /$ Bmsy in last year $=0.95,2.5$ th perc $=0.679,97.5$ perc $=1.22$
Fishing mortality in last year $=0.335,2.5$ th perc $=0.261,97.5$ perc $=0.468$
F/Fmsy $=0.814,2.5$ th perc $=0.636,97.5$ perc $=1.14$
Stock status and exploitation in 2014
Biomass $=12$, $B /$ Bmsy $=1.11$, fishing mortality $F=0.386, F / F m s y=0.939$
Comment: OK (RF 23.09.16)

D: Biomass

B: Finding viable r-k

E: Exploitation rate

Year

F: Equilibrium curve

Relative biomass B / k

Species: Solea solea, stock: sol-kask
Sole in Division IIIa and Subdivisions 22-24 (Skagerrak, Kattegat, and the Belts)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sol-kask.pdf
Region: Northeast Atlantic, Greater North Sea
Catch data used from years 1984-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2000 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.21$ - 1 expert, , prior range for $k=1.29-25$
Prior range of $q=0.795-3.5$

Results of CMSY analysis with altogether 2973 viable trajectories for 1998 r-k pairs
$r=0.58,95 \% C L=0.416-0.808, k=6.15,95 \% C L=4.23-8.95$
MSY = 0.891, 95\% CL = 0.797-0.996
Relative biomass last year $=0.51 \mathrm{k}, 2.5 \mathrm{th}=0.223,97.5 \mathrm{th}=0.596$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.327$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.672,95 \% C L=0.492-0.918, k=5.06,95 \% C L=3.73-6.86$
MSY $=0.85,95 \%$ CL $=0.713-1.01$
Relative biomass in last year $=0.443 \mathrm{k}, 2.5$ th perc $=0.318,97.5$ th perc $=0.563$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.297$
$\mathrm{q}=1.06, \mathrm{lcl}=0.794, \mathrm{ucl}=1.41$

Results for Management (based on BSM analysis)
Fmsy $=0.336,95 \% C L=0.246-0.459$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.336,95 \% C L=0.246-0.459$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=0.85,95 \% C L=0.713-1.01$
Bmsy $=2.53$, $95 \% \mathrm{CL}=1.87-3.43$
Biomass in last year $=2.24,2.5$ th perc $=1.61,97.5$ perc $=2.85$
$B /$ Bmsy in last year $=0.886,2.5$ th perc $=0.636,97.5$ perc $=1.13$
Fishing mortality in last year $=0.0999,2.5$ th perc $=0.0786,97.5$ perc $=0.139$
F/Fmsy $=0.297,2.5$ th perc $=0.234,97.5$ perc $=0.414$

Stock status and exploitation in 2014
Biomass $=2.28, B / B m s y=0.9$, fishing mortality $F=0.147, F / F m s y=0.438$
Comment: OK (RF 23.09.16)

C: Analysis of viable r-k

E: Exploitation rate

Year

Species: Solea solea, stock: sol-nsea
Sole in Subarea IV (North Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sol-nsea.pdf
Region: Northeast Atlantic, Greater North Sea
Catch data used from years 1960-2015, abundance $=$ CPUE
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass= 0.01-0.4 in year 1998 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.21$ - 1 expert, , prior range for $k=44-855$
Prior range of $q=0.626-2.76$

Results of CMSY analysis with altogether 1740 viable trajectories for 1279 r-k pairs
$r=0.504,95 \% C L=0.323-0.787, k=210,95 \% C L=151-292$
MSY = 26.5, 95\% CL = 24.1-29.1
Relative biomass last year $=0.256 \mathrm{k}, 2.5$ th $=0.0256,97.5$ th $=0.396$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.12$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.696,95 \% C L=0.526-0.922, k=154,95 \% C L=117-203$
MSY = 26.8, 95\% CL = 23.6-30.4
Relative biomass in last year $=0.384 \mathrm{k}, 2.5$ th perc $=0.29,97.5$ th perc $=0.467$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.694$
$q=0.859, \mathrm{lc\mid}=0.67, u c \mid=1.1$

Results for Management (based on BSM analysis)
Fmsy $=0.348,95 \% C L=0.263-0.461$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.348,95 \% C L=0.263-0.461$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=26.8,95 \% C L=23.6-30.4$
Bmsy $=76.9$, 95\% CL $=58.4-101$
Biomass in last year $=59.1,2.5$ th perc $=44.6,97.5$ perc $=71.9$
$B / B m s y$ in last year $=0.768,2.5$ th perc $=0.579,97.5$ perc $=0.934$
Fishing mortality in last year $=0.242,2.5$ th perc $=0.199,97.5$ perc $=0.321$
F/Fmsy $=0.694,2.5$ th perc $=0.571,97.5$ perc $=0.921$

Stock status and exploitation in 2014
Biomass $=54$, $\mathrm{B} / \mathrm{Bmsy}=0.702$, fishing mortality $\mathrm{F}=0.272$, $\mathrm{F} / \mathrm{Fmsy}=0.782$
Comment: OK (RF 23.09.16)

Species: Sprattus sprattus, stock: spr-kask
Sprat in Division Illa (Skagerrak and Kattegat)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/spr-kask.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1974-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2003 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.21-1.1$ expert, , prior range for $k=77.4-1637$
Prior range of $q=8.63 e-06-3.97 e-05$
Results of CMSY analysis with altogether 378 viable trajectories for 371 r -k pairs
$r=0.377,95 \% \mathrm{CL}=0.266-0.535, \mathrm{k}=849$, $95 \% \mathrm{CL}=508-1418$
MSY = 80, 95\% CL = 42.4-151
Relative biomass last year $=0.141 \mathrm{k}, 2.5 \mathrm{th}=0.0179,97.5 \mathrm{th}=0.394$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=0.526$
Results from Bayesian Schaefer model using catch \& CPUE
$\mathrm{r}=0.456,95 \% \mathrm{CL}=0.3-0.692, \mathrm{k}=590,95 \% \mathrm{CL}=421-827$
MSY = 67.3, 95\% CL = 51.8-87.3
Relative biomass in last year $=0.0519 \mathrm{k}$, 2.5th perc $=0.0221,97.5$ th perc $=0.154$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.9$
$\mathrm{q}=1.35 \mathrm{e}-05, \mathrm{lcl}=9.92 \mathrm{e}-06, \mathrm{ucl}=1.82 \mathrm{e}-05$
Results for Management (based on BSM analysis)
Fmsy $=0.228,95 \% C L=0.15-0.346$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0474,95 \%$ CL $=0.0312-0.0719$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=67.3,95 \%$ CL $=51.8-87.3$
Bmsy $=295$, 95\% CL $=211-413$
Biomass in last year $=30.7,2.5$ th perc $=13,97.5$ perc $=91.1$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.104,2.5$ th perc $=0.0441,97.5$ perc $=0.309$
Fishing mortality in last year $=0.433,2.5$ th perc $=0.146,97.5$ perc $=1.02$
F/Fmsy $=9.14,2.5$ th perc $=3.08,97.5$ perc $=21.5$
Stock status and exploitation in 2014
Biomass $=37.5, \mathrm{~B} / \mathrm{Bmsy}=0.127$, fishing mortality $\mathrm{F}=0.495, \mathrm{~F} / \mathrm{Fmsy}=8.54$
Comment: OK (RF 23.09.16)

D: Biomass

F: Equilibrium curve

Species: Sprattus sprattus , stock: spr-nsea
Sprat in Subarea IV (North Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/spr-nsea.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1974-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2010 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.21-1.1$ expert, , prior range for $\mathrm{k}=947-30025$
Prior range of $q=0.197-0.906$
Results of CMSY analysis with altogether 234 viable trajectories for 232 r -k pairs
$r=0.363,95 \%$ CL $=0.304-0.434, k=5197,95 \% C L=2841-9507$
MSY = 472, 95\% CL = 205-1088
Relative biomass last year $=0.615 \mathrm{k}, 2.5 \mathrm{th}=0.518,97.5 \mathrm{th}=0.723$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.298$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.463,95 \% \mathrm{CL}=0.326-0.658, \mathrm{k}=2908,95 \% \mathrm{CL}=2184-3873$
MSY = 337, 95% CL = 244-465
Relative biomass in last year $=0.575 \mathrm{k}$, 2.5th perc $=0.436,97.5$ th perc $=0.799$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.75$
$\mathrm{q}=0.235, \mathrm{lcl}=0.175$, ucl $=0.317$
Results for Management (based on BSM analysis)
Fmsy $=0.232,95 \% C L=0.163-0.329$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.232,95 \% C L=0.163-0.329$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 337, 95\% CL = 244-465
Bmsy $=1454$, 95\% CL = 1092-1937
Biomass in last year $=1672,2.5$ th perc $=1269,97.5$ perc $=2323$
$B /$ Bmsy in last year $=1.15,2.5$ th perc $=0.872,97.5$ perc $=1.6$
Fishing mortality in last year $=0.174,2.5$ th perc $=0.125,97.5$ perc $=0.229$
F/Fmsy $=0.75,2.5$ th perc $=0.54,97.5$ perc $=0.988$
Stock status and exploitation in 2014
Biomass $=1447, \mathrm{~B} / \mathrm{Bmsy}=0.995$, fishing mortality $\mathrm{F}=0.109$, $\mathrm{F} / \mathrm{Fmsy}=0.473$
Comment: OK (RF 23.09.16)

C: Analysis of viable r-k

E: Exploitation rate

Species: Scyliorhinus canicula, stock: syc-347d
Lesser-spotted dogfish in Subarea IV and Divisions IIIa and VIId (North Sea, Skagerrak and Kattegat, and eastern English Channel)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/syc-347d.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1993-2014, abundance $=$ CPUE
Prior initial relative biomass $=0.01-0.3$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2005 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.05-0.5$ default , prior range for $k=5.15-206$
Prior range of $q=3.18 \mathrm{e}-05-0.000201$

Results of CMSY analysis with altogether 3954 viable trajectories for 2144 r-k pairs
$r=0.282,95 \% C L=0.163-0.487, k=67.6,95 \% C L=23.2-197$
MSY = 4.77, 95\% CL = 1.71-13.3
Relative biomass last year $=0.462 \mathrm{k}, 2.5 \mathrm{th}=0.222,97.5 \mathrm{th}=0.594$
Exploitation $F /(r / 2)$ in last year $=0.584$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.35,95 \% C L=0.257-0.477, k=53.3,95 \% C L=31.4-90.6$
MSY = 4.67, 95\% CL = 3.13-6.96
Relative biomass in last year $=0.666 \mathrm{k}, 2.5$ th perc $=0.524,97.5$ th perc $=0.775$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.435$
$q=5.72 \mathrm{e}-05, \mathrm{lcl}=3.95 \mathrm{e}-05, \mathrm{ucl}=8.28 \mathrm{e}-05$

Results for Management (based on BSM analysis)
Fmsy $=0.175,95 \% C L=0.129-0.238$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.175,95 \% C L=0.129-0.238$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=4.67,95 \% C L=3.13-6.96$
Bmsy $=26.6$, 95\% CL $=15.7-45.3$
Biomass in last year $=35.5,2.5$ th perc $=27.9,97.5$ perc $=41.3$
B/Bmsy in last year $=1.33,2.5$ th perc $=1.05,97.5$ perc $=1.55$
Fishing mortality in last year $=0.0762,2.5$ th perc $=0.0655,97.5$ perc $=0.0968$
F/Fmsy $=0.435,2.5$ th perc $=0.374,97.5$ perc $=0.552$

Stock status and exploitation in 2014
Biomass $=35.5, \mathrm{~B} / \mathrm{Bmsy}=1.33$, fishing mortality $\mathrm{F}=0.0762, \mathrm{~F} / \mathrm{Fmsy}=0.435$
Comment: OK (RF 23.09.16)

D: Biomass

Catch syc-347d

Exploitation

E: Exploitation rate

F: Equilibrium curve

Species: Scophthalmus maximus , stock: tur-kask Turbot in Division IIIa
Source: http://ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/Tur-kask.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1996-2014 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass=0.01-0.4 in year 2010 default
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.24-0.82$ expert, , prior range for $k=0.265-3.54$
Prior range of $q=0.0016-0.00585$
Results of CMSY analysis with altogether 1655 viable trajectories for $995 r-k$ pairs
$r=0.577,95 \% C L=0.416-0.8, k=1.27,95 \% C L=0.817-1.97$
MSY $=0.183,95 \% \mathrm{CL}=0.131-0.254$
Relative biomass last year $=0.308 \mathrm{k}, 2.5$ th $=0.0341,97.5$ th $=0.397$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.24$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.54,95 \% C L=0.399-0.73, k=1.31,95 \% C L=0.973-1.76$
$\mathrm{MSY}=0.177,95 \% \mathrm{CL}=0.149-0.21$
Relative biomass in last year $=0.266 \mathrm{k}$, 2.5th perc $=0.107,97.5$ th perc $=0.437$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.28$
$q=0.00273,|c|=0.0021$, ucl $=0.00354$
Results for Management (based on BSM analysis)
Fmsy $=0.27,95 \% C L=0.2-0.365$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.27,95 \% C L=0.2-0.365$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 0.177, 95\% CL = 0.149-0.21
Bmsy $=0.655,95 \% \mathrm{CL}=0.487-0.881$
Biomass in last year $=0.349,2.5$ th perc $=0.14,97.5$ perc $=0.572$
$B /$ Bmsy in last year $=0.533,2.5$ th perc $=0.213,97.5$ perc $=0.874$
Fishing mortality in last year $=0.344,2.5$ th perc $=0.21,97.5$ perc $=0.859$
F/Fmsy $=1.28,2.5$ th perc $=0.777,97.5$ perc $=3.19$
Stock status and exploitation in 2014
Biomass $=0.349, B /$ Bmsy $=0.533$, fishing mortality $\mathrm{F}=0.344, \mathrm{~F} / \mathrm{Fmsy}=1.28$
Comment: OK (RF 23.09.16)

D: Biomass

B : Finding viable $\mathrm{r}-\mathrm{k}$

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Species: Scophthalmus maximus, stock: tur-nsea

Turbot in Subarea IV

Source:
http://ices.dk/sites/pub/Publication\ Reports/Expert\ Group\ Report/acom/2015/WGNSSK/20\% 20WGNSSK\%2Oreport\%20-\%20Sec\%2018\%20Turbot\%20in\%20Subarea\%20IV.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1975-2014 , abundance = CPUE
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass= 0.01 - 0.4 in year 2010 default
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.24-0.82$ expert, , prior range for $k=7.33-98.1$
Prior range of $q=0.568-2.08$

Results of CMSY analysis with altogether 1703 viable trajectories for 1384 r-k pairs
$r=0.458,95 \% C L=0.34-0.617, k=41,95 \% C L=31.6-53.1$
MSY = 4.69, 95\% CL = 4.17-5.28
Relative biomass last year $=0.326 \mathrm{k}, 2.5$ th $=0.0494$, 97.5 th $=0.397$
Exploitation $F /(r / 2)$ in last year $=0.961$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.457,95 \% C L=0.347-0.602, k=38.3,95 \% C L=29.7-49.3$
MSY = 4.38, 95\% CL = 3.78-5.06
Relative biomass in last year $=0.192 \mathrm{k}, 2.5$ th perc $=0.163,97.5$ th perc $=0.224$
Exploitation $F /(r / 2)$ in last year $=1.68$
$\mathrm{q}=0.882, \mathrm{lc\mid}=0.7, \mathrm{ucl}=1.11$

Results for Management (based on BSM analysis)
Fmsy $=0.228,95 \% C L=0.173-0.301$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.176,95 \% C L=0.133-0.232$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=4.38,95 \% C L=3.78-5.06$
Bmsy = 19.2, 95\% CL = 14.9-24.7
Biomass in last year $=7.36,2.5$ th perc $=6.24,97.5$ perc $=8.6$
$B /$ Bmsy in last year $=0.384,2.5$ th perc $=0.326,97.5$ perc $=0.449$
Fishing mortality in last year $=0.385,2.5$ th perc $=0.33,97.5$ perc $=0.454$
F/Fmsy $=2.19,2.5$ th perc $=1.88,97.5$ perc $=2.59$

Stock status and exploitation in 2014
Biomass $=7.36, \mathrm{~B} / \mathrm{Bmsy}=0.384$, fishing mortality $\mathrm{F}=0.385, \mathrm{~F} / \mathrm{Fmsy}=2.19$
Comment: OK (RF 23.09.16)

Species: Merlangius merlangus, stock: whg-47d
Whiting Subarea IV (North Sea) and Division VIId (Eastern Channel)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/whg-47d.pdf
Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1990-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2008 default
Prior final relative biomass $=0.01-0.4$, default
Prior range for $r=0.25-1$ expert, , prior range for $k=151-2442$
Prior range of $q=2.37-9.53$
Results of CMSY analysis with altogether 2057 viable trajectories for 1966 r-k pairs
$r=0.527,95 \% \mathrm{CL}=0.377-0.737, \mathrm{k}=1179$, $95 \% \mathrm{CL}=630-2205$
MSY = 155, 95\% CL = 72.5-333
Relative biomass last year $=0.156 \mathrm{k}, 2.5 \mathrm{th}=0.013,97.5 \mathrm{th}=0.386$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=0.624$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.742,95 \% \mathrm{CL}=0.541-1.02, \mathrm{k}=628,95 \% \mathrm{CL}=451-875$
MSY = 116, 95\% CL = 74.8-181
Relative biomass in last year $=0.174 \mathrm{k}$, 2.5th perc $=0.124,97.5$ th perc $=0.262$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.819$
$\mathrm{q}=2.29, \mathrm{lcl}=1.82$, ucl $=2.88$
Results for Management (based on BSM analysis)
Fmsy $=0.371,95 \% C L=0.27-0.509$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.258,95 \% C L=0.188-0.354$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 116, 95\% CL = 74.8-181
Bmsy $=314,95 \%$ CL $=225-438$
Biomass in last year $=109,2.5$ th perc $=77.9,97.5$ perc $=165$
$\mathrm{B} /$ Bmsy in last year $=0.348,2.5$ th perc $=0.248,97.5$ perc $=0.524$
Fishing mortality in last year $=0.304,2.5$ th perc $=0.202,97.5$ perc $=0.426$
F/Fmsy $=1.18,2.5$ th perc $=0.781,97.5$ perc $=1.65$
Stock status and exploitation in 2014
Biomass $=104, \mathrm{~B} /$ Bmsy $=0.333$, fishing mortality $\mathrm{F}=0.294$, $\mathrm{F} / \mathrm{Fmsy}=1.19$
Comment: OK (RF 23.09.16)

D: Biomass

Catch whg-47d

Exploitation

E: Exploitation rate

F: Equilibrium curve

Species: Merlangius merlangus, stock: whg-kask
Whiting in Division IIIa (Skagerrak and Kattegat)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/whg-kask.pdf
Region: Northeast Atlantic, Greater North Sea
Catch data used from years 1975-2014 , abundance $=$ None
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass= $0.01-0.4$ in year 1992 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.25-1$ expert, , prior range for $k=30.9-500$

Results of CMSY analysis with altogether 762 viable trajectories for 743 r-k pairs
$r=0.461,95 \% C L=0.366-0.58, k=219,95 \% C L=145-330$
MSY = 25.3, 95\% CL = 16.4-38.9
Relative biomass last year $=0.0676$ k, 2.5th $=0.012$, 97.5 th $=0.246$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.205$

Results for Management (based on CMSY analysis)
Fmsy $=0.23,95 \% C L=0.183-0.29$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0623,95 \% C L=0.0495-0.0784$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 25.3, 95\% CL = 16.4-38.9
Bmsy = 110, 95\% CL = 72.7-165
Biomass in last year $=14.8,2.5$ th perc $=2.64,97.5$ perc $=54$
$B /$ Bmsy in last year $=0.135,2.5$ th perc $=0.0241,97.5$ perc $=0.492$
Fishing mortality in last year $=0.0686,2.5$ th perc $=0.0189,97.5$ perc $=0.385$
F/Fmsy $=1.1,2.5$ th perc $=0.303,97.5$ perc $=6.18$

Stock status and exploitation in 2014
Biomass $=14.8, \mathrm{~B} / \mathrm{Bmsy}=0.135$, fishing mortality $\mathrm{F}=0.0686, \mathrm{~F} / \mathrm{Fmsy}=1.1$
Comment: OK (RF 23.09.16)

D: Biomass

F: Equilibrium curve

Species: Glyptocephalus cynoglossus, stock: wit-nsea
Witch in Subarea IV and Divisions IIIa and VIId (North Sea, Skagerrak and Kattegat, Eastern English Channel)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/wit-nsea.pdf Region: Northeast Atlantic , Greater North Sea
Catch data used from years 1968-2014, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2004 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.18-0.62$ expert, , prior range for $k=6.76-95.3$
Prior range of $q=6.37 \mathrm{e}-06-2.39 \mathrm{e}-05$
Results of CMSY analysis with altogether 1958 viable trajectories for 690 r -k pairs
$r=0.443,95 \% C L=0.32-0.613, \mathrm{k}=28,95 \% \mathrm{CL}=20-39.2$
MSY = 3.1, $95 \% \mathrm{CL}=2.85-3.36$
Relative biomass last year $=0.517 \mathrm{k}, 2.5 \mathrm{th}=0.26,97.5 \mathrm{th}=0.596$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.68$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.488,95 \% \mathrm{CL}=0.371-0.641, \mathrm{k}=26.5,95 \% \mathrm{CL}=20.2-34.9$
MSY = 3.23, 95\% CL = 2.88-3.63
Relative biomass in last year $=0.534 \mathrm{k}, 2.5$ th perc $=0.308,97.5$ th perc $=0.708$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.766$
$\mathrm{q}=1.04 \mathrm{e}-05, \mathrm{lcl}=7.99 \mathrm{e}-06, \mathrm{ucl}=1.36 \mathrm{e}-05$
Results for Management (based on BSM analysis)
Fmsy $=0.244,95 \% \mathrm{CL}=0.186-0.32$ (if B > 1/2 Bmsy then Fmsy $=0.5$ r)
Fmsy $=0.244,95 \% C L=0.186-0.32$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 3.23, 95\% CL = 2.88-3.63
Bmsy = 13.3, 95\% CL = 10.1-17.4
Biomass in last year $=14.2,2.5$ th perc $=8.16,97.5$ perc $=18.8$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=1.07,2.5$ th perc $=0.615,97.5$ perc $=1.42$
Fishing mortality in last year $=0.187,2.5$ th perc $=0.141,97.5$ perc $=0.324$
F/Fmsy $=0.766,2.5$ th perc $=0.578,97.5$ perc $=1.33$
Stock status and exploitation in 2014
Biomass $=14.2, \mathrm{~B} / \mathrm{Bmsy}=1.07$, fishing mortality $\mathrm{F}=0.187, \mathrm{~F} / \mathrm{Fmsy}=0.766$
Comment: No update in 2016. OK (RF 23.09.16)

E: Exploitation rate

Baltic Sea (analyzed with CMSY_O_7m.R)
Species: Scophthalmus rhombus, stock: bll-2232
Brill in Subdivisions 22-32 (Baltic Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/bll-2232.pdf
Region: Northeast Atlantic, Baltic Sea
Catch data used from years 1995-2015, abundance $=$ CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= $0.01-0.3$ in year 2001 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.2-0.8$ default, prior range for $k=0.2-3.2$
Prior range of $q=0.00418-0.0167$

Results of CMSY analysis with altogether 3812 viable trajectories for 3190 r-k pairs
$r=0.517,95 \% C L=0.359-0.743, k=0.597,95 \% C L=0.304-1.17$
MSY $=0.0772$, 95% CL $=0.0369-0.161$
Relative biomass last year $=0.161 \mathrm{k}, 2.5$ th $=0.0181,97.5$ th $=0.293$
Exploitation $F /(r / 2)$ in last year $=1.38$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.472,95 \% C L=0.335-0.664, k=0.671,95 \% C L=0.488-0.921$
MSY $=0.0792,95 \%$ CL $=0.0604-0.104$
Relative biomass in last year $=0.272 \mathrm{k}, 2.5$ th perc $=0.126,97.5$ th perc $=0.365$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.931$
$q=0.00677, \mathrm{lcl}=0.00508, \mathrm{ucl}=0.00904$

Results for Management (based on BSM analysis)
Fmsy $=0.236,95 \% C L=0.168-0.332$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.236,95 \% C L=0.168-0.332$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.0792,95 \% C L=0.0604-0.104$
Bmsy $=0.335$, 95\% CL $=0.244-0.461$
Biomass in last year $=0.182,2.5$ th perc $=0.0848,97.5$ perc $=0.245$
$B / B m s y$ in last year $=0.543,2.5$ th perc $=0.253,97.5$ perc $=0.729$
Fishing mortality in last year $=0.22,2.5$ th perc $=0.164,97.5$ perc $=0.472$
F/Fmsy $=0.931,2.5$ th perc $=0.693,97.5$ perc $=2$

Stock status and exploitation in 2014
Biomass $=0.16, B / B m s y=0.477$, fishing mortality $F=0.2, F / F m s y=0.889$
Comment: OK (RF 21.09.16)

D: Biomass

E: Exploitation rate

F: Equilibrium curve

Species: Gadus morhua, stock: cod-2224
Cod in Sub-division 22 to 24
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/cod-2224.pdf
Region: Northeast Atlantic, Baltic Sea
Catch data used from years 1970-2015 , abundance $=$ CPUE
Prior initial relative biomass $=0.4-0.8$ expert
Prior intermediate rel. biomass= 0.01-0.25 in year 2009 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.23-0.96$ expert, , prior range for $k=74.4-1242$
Prior range of $q=0.293-1.2$

Results of CMSY analysis with altogether 208 viable trajectories for 202 r-k pairs
$r=0.373,95 \% C L=0.248-0.559, k=539,95 \% C L=421-690$
MSY = 50.2, 95\% CL = 41.9-60.2
Relative biomass last year $=0.134 \mathrm{k}, 2.5 \mathrm{th}=0.0147,97.5 \mathrm{th}=0.282$
Exploitation $F /(r / 2)$ in last year $=0.846$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.576,95 \% C L=0.413-0.802, k=359,95 \% C L=265-485$
MSY $=51.6,95 \% \mathrm{CL}=40.8-65.4$
Relative biomass in last year $=0.132 \mathrm{k}, 2.5$ th perc $=0.0854,97.5$ th perc $=0.203$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.881$
$\mathrm{q}=0.369, \mathrm{lc\mid}=0.28, \mathrm{ucl}=0.484$

Results for Management (based on BSM analysis)
Fmsy $=0.288,95 \% C L=0.206-0.401$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.152,95 \% C L=0.109-0.211$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=51.6,95 \% \mathrm{CL}=40.8-65.4$
Bmsy $=179$, 95\% CL = 133-242
Biomass in last year $=47.3,2.5$ th perc $=30.7,97.5$ perc $=72.7$
$\mathrm{B} /$ Bmsy in last year $=0.263,2.5$ th perc $=0.171,97.5$ perc $=0.405$
Fishing mortality in last year $=0.254,2.5$ th perc $=0.165,97.5$ perc $=0.391$
F/Fmsy $=1.67,2.5$ th perc $=1.09,97.5$ perc $=2.58$
Stock status and exploitation in 2014
Biomass $=44.5$, $\mathrm{B} / \mathrm{Bmsy}=0.248$, fishing mortality $\mathrm{F}=0.257$, $\mathrm{F} / \mathrm{Fmsy}=1.8$
Comment: OK (RF 21.09.16)

Species: Gadus morhua , stock: cod-2532
Cod in Subdivisions 25-32
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/cod-2532.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 1990-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01-0.2 in year 2003 expert
Prior final relative biomass $=0.01-0.2$ expert
Prior range for $r=0.23-0.96$ expert, , prior range for $k=164-2743$
Prior range of $q=0.000973-0.00398$
Results of CMSY analysis with altogether 497 viable trajectories for 495 r -k pairs
$r=0.48,95 \% C L=0.308-0.747, k=1910,95 \% C L=1131-3225$
MSY = 229, 95\% CL = 129-405
Relative biomass last year $=0.0739 \mathrm{k}, 2.5 \mathrm{th}=0.0129,97.5 \mathrm{th}=0.192$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.17$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.597,95 \% C L=0.417-0.853, k=785,95 \% C L=553-1115$
MSY = 117, 95\% CL = 91.1-151
Relative biomass in last year $=0.139 \mathrm{k}$, 2.5th perc $=0.0599,97.5$ th perc $=0.224$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.35$
$\mathrm{q}=0.00138, \mathrm{lcl}=0.00103, \mathrm{ucl}=0.00184$
Results for Management (based on BSM analysis)
Fmsy $=0.298,95 \% \mathrm{CL}=0.209-0.426$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.165,95 \% C L=0.116-0.236$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 117, 95\% CL = 91.1-151
Bmsy $=393$, 95\% CL $=277-557$
Biomass in last year $=109,2.5$ th perc $=47,97.5$ perc $=176$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.277,2.5$ th perc $=0.12,97.5$ perc $=0.447$
Fishing mortality in last year $=0.401,2.5$ th perc $=0.249,97.5$ perc $=0.929$
$\mathrm{F} / \mathrm{Fmsy}=2.43,2.5$ th perc $=1.5,97.5$ perc $=5.62$
Stock status and exploitation in 2014
Biomass $=118, \mathrm{~B} /$ Bmsy $=0.3$, fishing mortality $\mathrm{F}=0.327$, $\mathrm{F} / \mathrm{Fmsy}=1.83$
Comment: OK (RF 21.09.16)

D: Biomass

Species: Limanda limanda, stock: dab-2232
Dab in Subdivisions 22-32 (Baltic Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/dab-2232.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 1970-2015 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2001 default
Prior final relative biomass $=0.2-0.6$, default
Prior range for $r=0.24-0.98$ expert, , prior range for $k=2.82-46$
Prior range of $q=0.0206-0.0831$
Results of CMSY analysis with altogether 2993 viable trajectories for 1315 r-k pairs
$r=0.546,95 \% \mathrm{CL}=0.389-0.767, \mathrm{k}=13.4,95 \% \mathrm{CL}=9.92-18.1$
MSY = 1.83, 95\% CL = 1.69-1.98
Relative biomass last year $=0.514 \mathrm{k}, 2.5 \mathrm{th}=0.273,97.5 \mathrm{th}=0.598$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=0.694$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.873,95 \% \mathrm{CL}=0.718-1.06, \mathrm{k}=9.05,95 \% \mathrm{CL}=7.51-10.9$
MSY = 1.97, 95\% CL = 1.85-2.1
Relative biomass in last year $=0.649 \mathrm{k}, 2.5$ th perc $=0.495,97.5$ th perc $=0.755$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.494$
$\mathrm{q}=0.0218, \mathrm{lcl}=0.0172, \mathrm{ucl}=0.0277$
Results for Management (based on BSM analysis)
Fmsy $=0.437,95 \% C L=0.359-0.531$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.437,95 \% C L=0.359-0.531$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 1.97, 95\% CL = 1.85-2.1
Bmsy $=4.52$, 95% CL $=3.75-5.45$
Biomass in last year $=5.87,2.5$ th perc $=4.48,97.5$ perc $=6.83$
$\mathrm{B} /$ Bmsy in last year $=1.3,2.5$ th perc $=0.99,97.5$ perc $=1.51$
Fishing mortality in last year $=0.216,2.5$ th perc $=0.186,97.5$ perc $=0.283$
F/Fmsy $=0.494,2.5$ th perc $=0.425,97.5$ perc $=0.648$
Stock status and exploitation in 2014
Biomass $=5.72, \mathrm{~B} / \mathrm{Bmsy}=1.27$, fishing mortality $\mathrm{F}=0.222, \mathrm{~F} / \mathrm{Fmsy}=0.508$
Comment: OK (RF 21.09.16)

D: Biomass

F: Equilibrium curve

Exploitation

Species: Platichthys flesus, stock: fle-2223
Flounder in Subdivisions 22-23 (Belts and sound)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/fle-2223.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 1998-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2005 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.22-0.97$ expert, , prior range for $k=4.92-130$
Prior range of $q=0.00148-0.00623$

Results of CMSY analysis with altogether 6672 viable trajectories for 3292 r-k pairs
$r=0.67,95 \% C L=0.472-0.953, k=13.6,95 \% C L=7.39-24.9$
MSY = 2.27, 95\% CL = 1.38-3.75
Relative biomass last year $=0.779 \mathrm{k}, 2.5 \mathrm{th}=0.547,97.5$ th $=0.884$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.356$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.44,95 \% \mathrm{CL}=0.322-0.603, \mathrm{k}=23.4,95 \% \mathrm{CL}=16.1-33.8$
$\mathrm{MSY}=2.57,95 \% \mathrm{CL}=2.01-3.3$
Relative biomass in last year $=0.837 \mathrm{k}, 2.5$ th perc $=0.672,97.5$ th perc $=0.968$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.263$
$q=0.00317, \mathrm{lcl}=0.00233, \mathrm{ucl}=0.00431$

Results for Management (based on BSM analysis)
Fmsy $=0.22,95 \% C L=0.161-0.301$ (if $B>1 / 2$ Bmsy then $F m s y=0.5 r$)
Fmsy $=0.22,95 \% C L=0.161-0.301$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 2.57, 95\% CL = 2.01-3.3
Bmsy $=11.7$, 95\% CL $=8.07-16.9$
Biomass in last year $=19.5,2.5$ th perc $=15.7,97.5$ perc $=22.6$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=1.67,2.5$ th perc $=1.34,97.5$ perc $=1.94$
Fishing mortality in last year $=0.0578,2.5$ th perc $=0.05,97.5$ perc $=0.0721$
F/Fmsy $=0.263,2.5$ th perc $=0.227,97.5$ perc $=0.327$

Stock status and exploitation in 2014
Biomass $=19.1$, $\mathrm{B} / \mathrm{Bmsy}=1.63$, fishing mortality $\mathrm{F}=0.0626, \mathrm{~F} / \mathrm{Fmsy}=0.284$
Comment: OK (RF 21.09.16)

D: Biomass

E: Exploitation rate

F: Equilibrium curve

Exploitation

Species: Platichthys flesus, stock: fle-2425
Flounder in Subdivisions 24-25 (Southern Baltic Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/fle-2425.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 1990-2015 , abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2007 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.22-0.97$ expert, , prior range for $k=27.5-728$
Prior range of $q=0.00115-0.00483$

Results of CMSY analysis with altogether 2684 viable trajectories for 2684 r-k pairs
$r=0.622,95 \% \mathrm{CL}=0.422-0.916$, $\mathrm{k}=252$, $95 \% \mathrm{CL}=108-590$
MSY = 39.2 , 95\% CL = 14.1-109
Relative biomass last year $=0.804 \mathrm{k}, 2.5 \mathrm{th}=0.515,97.5 \mathrm{th}=0.897$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.212$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.647,95 \% C L=0.487-0.859, k=113,95 \% C L=75.8-168$
MSY = 18.3 , 95\% CL = 14.1-23.7
Relative biomass in last year $=0.726 \mathrm{k}, 2.5$ th perc $=0.555,97.5$ th perc $=0.87$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.418$
$\mathrm{q}=0.00169, \mathrm{lcl}=0.00126, \mathrm{ucl}=0.00226$

Results for Management (based on BSM analysis)
Fmsy $=0.323,95 \% C L=0.243-0.43$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.323,95 \% C L=0.243-0.43$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 18.3, 95\% CL = 14.1-23.7
Bmsy $=56.5$, 95\% CL $=37.9-84.1$
Biomass in last year $=82$, 2.5th perc $=62.7,97.5$ perc $=98.3$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=1.45,2.5$ th perc $=1.11,97.5$ perc $=1.74$
Fishing mortality in last year $=0.135,2.5$ th perc $=0.113,97.5$ perc $=0.177$
F/Fmsy $=0.418,2.5$ th perc $=0.349,97.5$ perc $=0.548$

Stock status and exploitation in 2014
Biomass $=79.1, \mathrm{~B} / \mathrm{Bmsy}=1.4$, fishing mortality $\mathrm{F}=0.185, \mathrm{~F} / \mathrm{Fmsy}=0.571$
Comment: OK (RF 21.09.16)

D: Biomass

Year

E: Exploitation rate

Catch fle-2425

F: Equilibrium curve

Species: Platichthys flesus, stock: fle-2628
Flounder in Subdivisions 26 and 28 (Eastern Gotland and Gulf of Gdansk)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/fle-2628.pdf
Region: Northeast Atlantic, Baltic Sea
Catch data used from years 1996-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.2-0.6 in year 2005 default
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.22-0.97$ expert, , prior range for $k=5.67-99.9$
Prior range of $q=0.00866-0.0364$

Results of CMSY analysis with altogether 2247 viable trajectories for 1123 r-k pairs
$r=0.67,95 \% C L=0.472-0.953, k=25.2,95 \% C L=16.2-39.1$
MSY = 4.22, 95\% CL = 3.55-5.02
Relative biomass last year $=0.199 \mathrm{k}, 2.5 \mathrm{th}=0.0236,97.5$ th $=0.296$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.81$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.507,95 \% C L=0.343-0.75, k=32.2,95 \% C L=22.2-46.7$
MSY = 4.08, 95\% CL = 3.55-4.68
Relative biomass in last year $=0.212 \mathrm{k}, 2.5$ th perc $=0.132$, 97.5 th perc $=0.32$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.57$
$q=0.0153, \mathrm{lc\mid}=0.0119, \mathrm{ucl}=0.0198$

Results for Management (based on BSM analysis)
Fmsy $=0.254,95 \% C L=0.171-0.375$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.215,95 \% C L=0.145-0.318$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=4.08,95 \% C L=3.55-4.68$
Bmsy = 16.1, 95\% CL = 11.1-23.4
Biomass in last year $=6.82,2.5$ th perc $=4.24,97.5$ perc $=10.3$
$B /$ Bmsy in last year $=0.424,2.5$ th perc $=0.263,97.5$ perc $=0.64$
Fishing mortality in last year $=0.651,2.5$ th perc $=0.432,97.5$ perc $=1.05$
F/Fmsy $=3.03,2.5$ th perc $=2.01,97.5$ perc $=4.88$

Stock status and exploitation in 2014
Biomass $=8.34, \mathrm{~B} / \mathrm{Bmsy}=0.518$, fishing mortality $\mathrm{F}=0.553, \mathrm{~F} / \mathrm{Fmsy}=2.18$
Comment: OK (RF 21.09.16)

D: Biomass

Year

Catch fle-2628

Exploitation

E: Exploitation rate

F: Equilibrium curve

Species: Platichthys flesus, stock: fle-2732
Flounder in Subdivisions 27 and 29-32 (Northern Central and Northern Baltic Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/fle-2732.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 1980-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2000 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.22-0.97$ expert, , prior range for $k=1.85-32.6$
Prior range of $q=0.000745-0.00313$

Results of CMSY analysis with altogether 670 viable trajectories for 665 r-k pairs
$r=0.397,95 \% C L=0.328-0.48, k=17.8,95 \% C L=10.3-30.8$
MSY = 1.77, 95\% CL = 0.877-3.56
Relative biomass last year $=0.0951 \mathrm{k}, 2.5 \mathrm{th}=0.0162,97.5 \mathrm{th}=0.285$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.591$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.555,95 \% C L=0.359-0.859, k=10,95 \% C L=7.14-14.1$
MSY = 1.39, 95\% CL = 1.07-1.82
Relative biomass in last year $=0.0763 \mathrm{k}, 2.5$ th perc $=0.0232,97.5$ th perc $=0.215$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.828$
$q=0.00103, \mathrm{lcl}=0.000772$, ucl $=0.00137$

Results for Management (based on BSM analysis)
Fmsy $=0.278,95 \% C L=0.179-0.43$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0847,95 \% C L=0.0547-0.131$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=1.39,95 \% \mathrm{CL}=1.07-1.82$
Bmsy $=5.02$, 95\% CL $=3.57-7.06$
Biomass in last year $=0.766,2.5$ th perc $=0.233,97.5$ perc $=2.16$
$B /$ Bmsy in last year $=0.153,2.5$ th perc $=0.0465,97.5$ perc $=0.429$
Fishing mortality in last year $=0.23,2.5$ th perc $=0.0816,97.5$ perc $=0.754$
F/Fmsy $=2.71,2.5$ th perc $=0.964,97.5$ perc $=8.9$

Stock status and exploitation in 2014
Biomass $=0.831$, $B / B m s y=0.165$, fishing mortality $F=0.22, F / F m s y=2.4$
Comment: OK (RF 21.09.16)

Year

D: Biomass

Year

B: Finding viable r-k

E: Exploitation rate

Year

C: Analysis of viable r-k

F: Equilibrium curve

Catch fle-2732

Species: Clupea harengus , stock: her-2532-gor
Herring in Subdivisions 25-29 (excluding Gulf of Riga) and 32
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/her-2532-gor.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 1974-2015 , abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2005 default
Prior final relative biomass $=0.2-0.6$, default
Prior range for $r=0.16-1$ expert, , prior range for $k=370-9453$
Prior range of $q=1.42-7.15$
Results of CMSY analysis with altogether 3006 viable trajectories for 1498 r -k pairs
$r=0.35,95 \% \mathrm{CL}=0.269-0.454, \mathrm{k}=2570,95 \% \mathrm{CL}=1851-3569$
MSY = 225,95\% CL = 197-256
Relative biomass last year $=0.523 \mathrm{k}, 2.5 \mathrm{th}=0.277,97.5 \mathrm{th}=0.598$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.579$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.452,95 \% C L=0.346-0.589, k=1967,95 \% C L=1540-2512$
MSY = 222, 95\% CL = 195-253
Relative biomass in last year $=0.482 \mathrm{k}, 2.5$ th perc $=0.413,97.5$ th perc $=0.553$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.815$
$\mathrm{q}=1.1, \mathrm{lc\mid}=0.871$, ucl $=1.39$
Results for Management (based on BSM analysis)
Fmsy $=0.226,95 \% \mathrm{CL}=0.173-0.295$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5$ r)
Fmsy $=0.226,95 \%$ CL $=0.173-0.295$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 222, 95\% CL = 195-253
Bmsy $=983$, 95% CL $=770-1256$
Biomass in last year $=947,2.5$ th perc $=812,97.5$ perc $=1088$
$\mathrm{B} /$ Bmsy in last year $=0.963,2.5$ th perc $=0.825,97.5$ perc $=1.11$
Fishing mortality in last year $=0.184,2.5$ th perc $=0.16,97.5$ perc $=0.215$
F/Fmsy $=0.815,2.5$ th perc $=0.709,97.5$ perc $=0.951$
Stock status and exploitation in 2014
Biomass $=921, \mathrm{~B} /$ Bmsy $=0.937$, fishing mortality $\mathrm{F}=0.144, \mathrm{~F} / \mathrm{Fmsy}=0.638$
Comment: OK (RF 21.09.16)

B: Finding viable r-k

C: Analysis of viable r-k

Species: Clupea harengus, stock: her-30
Herring in Subdivision 30 (Bothnian Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/her-30.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 1990-2015, abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2000 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.16-1$ expert, , prior range for $k=221-8480$
Prior range of $q=0.833-4.21$

Results of CMSY analysis with altogether 715 viable trajectories for 681 r-k pairs
$r=0.279,95 \% C L=0.0949-0.823, k=901,95 \% C L=707-1149$
MSY = 63, 95\% CL = 56.8-69.8
Relative biomass last year $=0.509 \mathrm{k}, 2.5$ th $=0.5,97.5$ th $=0.548$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.72$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.366,95 \% C L=0.243-0.552, k=735,95 \% C L=527-1025$
MSY = 67.3, 95\% CL = 51.2-88.5
Relative biomass in last year $=0.779 \mathrm{k}, 2.5$ th perc $=0.608,97.5$ th perc $=0.944$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.05$
$\mathrm{q}=1.3, \mathrm{lc\mid}=0.944, \mathrm{ucl}=1.78$

Results for Management (based on BSM analysis)
Fmsy $=0.183,95 \% C L=0.121-0.276$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.183,95 \% C L=0.121-0.276$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=67.3,95 \% C L=51.2-88.5$
Bmsy $=368$, 95\% CL = 264-513
Biomass in last year $=573,2.5$ th perc $=447,97.5$ perc $=694$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=1.56,2.5$ th perc $=1.22,97.5$ perc $=1.89$
Fishing mortality in last year $=0.193,2.5$ th perc $=0.159,97.5$ perc $=0.247$
F/Fmsy $=1.05,2.5$ th perc $=0.869,97.5$ perc $=1.35$

Stock status and exploitation in 2014
Biomass $=559$, $\mathrm{B} / \mathrm{Bmsy}=1.52$, fishing mortality $\mathrm{F}=0.198$, $\mathrm{F} / \mathrm{Fmsy}=1.08$
Comment: OK (RF 21.09.16)

B : Finding viable $r-k$

C: Analysis of viable r-k

D: Biomass

Catch her-30

Species: Clupea harengus , stock: her-31
Herring in Subdivision 31 (BothnianBay)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/her-31.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 1980-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 1995 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $\mathrm{r}=0.16$ - 1 expert, , prior range for $\mathrm{k}=9.7-248$
Prior range of $q=4.62 e-05-0.000234$
Results of CMSY analysis with altogether 2075 viable trajectories for 1501 r -k pairs
$r=0.35,95 \% C L=0.269-0.454, k=86.6,95 \% C L=54.4-138$
MSY = 7.58, 95\% CL = 5.08-11.3
Relative biomass last year $=0.525 \mathrm{k}, 2.5 \mathrm{th}=0.242,97.5 \mathrm{th}=0.598$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=0.585$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.546,95 \% C L=0.4-0.745, k=49.3,95 \% C L=36.8-66.1$
MSY = 6.73, 95\% CL = 5.53-8.2
Relative biomass in last year $=0.35 \mathrm{k}, 2.5$ th perc $=0.28,97.5$ th perc $=0.429$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.961$
$\mathrm{q}=5.41 \mathrm{e}-05, \mathrm{lcl}=4.16 \mathrm{e}-05, \mathrm{ucl}=7.02 \mathrm{e}-05$
Results for Management (based on BSM analysis)
Fmsy $=0.273,95 \% C L=0.2-0.373$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.273,95 \% C L=0.2-0.373$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 6.73, 95\% CL = 5.53-8.2
Bmsy = 24.7, 95\% CL = 18.4-33
Biomass in last year $=17.2,2.5$ th perc $=13.8,97.5$ perc $=21.1$
$B /$ Bmsy in last year $=0.7,2.5$ th perc $=0.56,97.5$ perc $=0.857$
Fishing mortality in last year $=0.262,2.5$ th perc $=0.214,97.5$ perc $=0.328$
F/Fmsy $=0.961,2.5$ th perc $=0.784,97.5$ perc $=1.2$
Stock status and exploitation in 2014
Biomass $=17.8, \mathrm{~B} /$ Bmsy $=0.721$, fishing mortality $\mathrm{F}=0.272, \mathrm{~F} / \mathrm{Fmsy}=0.995$
Comment: OK (RF 21.09.16)

Year

E: Exploitation rate

Year

F: Equilibrium curve

Relative biomass B / k

Species: Clupea harengus , stock: her-3a22
Herring in Division Illa and Subdivisions 22-24
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/her-3a22.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 1991-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= 0.01-0.3 in year 2011 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $\mathrm{r}=0.16-1$ expert, , prior range for $\mathrm{k}=194-4949$
Prior range of $q=0.278-1.41$
Results of CMSY analysis with altogether 3011 viable trajectories for 2497 r-k pairs
$r=0.423,95 \% C L=0.291-0.615, k=1704,95 \% C L=841-3450$
MSY = 180, 95\% CL = 83.6-389
Relative biomass last year $=0.165 \mathrm{k}, 2.5 \mathrm{th}=0.0173,97.5 \mathrm{th}=0.386$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=0.665$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.436,95 \% C L=0.31-0.612, k=1201,95 \% C L=894-1613$
MSY = 131, 95% CL = 101-169
Relative biomass in last year $=0.238 \mathrm{k}$, 2.5th perc $=0.183,97.5$ th perc $=0.296$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.601$
$\mathrm{q}=0.455, \mathrm{lcl}=0.346$, ucl $=0.597$
Results for Management (based on BSM analysis)
Fmsy $=0.218,95 \% \mathrm{CL}=0.155-0.306$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.208,95 \% C L=0.148-0.292$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 131, 95\% CL = 101-169
Bmsy $=600$, 95% CL $=447-807$
Biomass in last year $=286,2.5$ th perc $=220,97.5$ perc $=355$
B / Bm sy in last year $=0.477,2.5$ th perc $=0.366,97.5$ perc $=0.591$
Fishing mortality in last year $=0.131,2.5$ th perc $=0.106,97.5$ perc $=0.171$
F/Fmsy $=0.631,2.5$ th perc $=0.509,97.5$ perc $=0.822$
Stock status and exploitation in 2014
Biomass $=260$, $\mathrm{B} / \mathrm{Bmsy}=0.434$, fishing mortality $\mathrm{F}=0.143$, $\mathrm{F} / \mathrm{Fmsy}=0.759$
Comment: OK (RF 21.09.16)

D: Biomass

Year

E: Exploitation rate

F: Equilibrium curve

Catch her-3a22

Species: Clupea harengus , stock: her-riga
Herring in the Gulf of Riga
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/her-riga.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 1977-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 1990 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.16-1$ expert, , prior range for $k=40-1022$
Prior range of $q=0.585-2.96$
Results of CMSY analysis with altogether 2106 viable trajectories for 1216 r -k pairs
$r=0.456,95 \% C L=0.28-0.743, k=268,95 \% C L=179-402$
MSY = 30.6, 95\% CL = 26.8-34.9
Relative biomass last year $=0.398 \mathrm{k}, 2.5 \mathrm{th}=0.215,97.5 \mathrm{th}=0.58$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.17$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.467,95 \% \mathrm{CL}=0.348-0.626, \mathrm{k}=266,95 \% \mathrm{CL}=188-375$
MSY = 31, 95\% CL = 25.9-37.1
Relative biomass in last year $=0.464 \mathrm{k}, 2.5$ th perc $=0.363,97.5$ th perc $=0.617$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.14$
$\mathrm{q}=0.796, \mathrm{lcl}=0.603$, ucl $=1.05$
Results for Management (based on BSM analysis)
Fmsy $=0.234,95 \% C L=0.174-0.313$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.234,95 \% C L=0.174-0.313$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 31, 95\% CL = 25.9-37.1
Bmsy $=133$, 95\% CL = 94.2-187
Biomass in last year $=123,2.5$ th perc $=96.5,97.5$ perc $=164$
$\mathrm{B} /$ Bmsy in last year $=0.928,2.5$ th perc $=0.726,97.5$ perc $=1.23$
Fishing mortality in last year $=0.266,2.5$ th perc $=0.2,97.5$ perc $=0.341$
F/Fmsy $=1.14,2.5$ th perc $=0.858,97.5$ perc $=1.46$
Stock status and exploitation in 2014
Biomass $=126, B /$ Bmsy $=0.949$, fishing mortality $\mathrm{F}=0.208, \mathrm{~F} / \mathrm{Fmsy}=0.892$
Comment: OK (RF 21.09.16)

C: Analysis of viable r-k

D: Biomass

Species: Pleuronectes platessa , stock: ple-2123
Plaice in Subdivisions 21, 22, and 23 (Kattegat, Belts, and Sound)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/ple-2123.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 1999-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 2010 default
Prior final relative biomass $=0.2-0.6$, default
Prior range for $r=0.2-0.77$ expert, , prior range for $k=5.16-79.5$
Prior range of $q=0.714-2.8$
Results of CMSY analysis with altogether 3708 viable trajectories for 2692 r -k pairs
$r=0.537,95 \% C L=0.385-0.747, k=32.3,95 \% C L=17.1-60.9$
MSY = 4.33, 95\% CL = 2.3-8.17
Relative biomass last year $=0.51 \mathrm{k}, 2.5$ th $=0.235,97.5$ th $=0.597$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.496$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.755,95 \% C L=0.604-0.944, k=25.2,95 \% C L=19-33.3$
MSY = 4.75, 95\% CL = 3.82-5.92
Relative biomass in last year $=0.643 \mathrm{k}$, 2.5th perc $=0.547,97.5$ th perc $=0.739$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.44$
$\mathrm{q}=0.956, \mathrm{lcl}=0.763, \mathrm{ucl}=1.2$
Results for Management (based on BSM analysis)
Fmsy $=0.378,95 \% \mathrm{CL}=0.302-0.472$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.378,95 \% C L=0.302-0.472$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=4.75,95 \%$ CL $=3.82-5.92$
Bmsy = 12.6, 95\% CL = 9.52-16.6
Biomass in last year $=16.2,2.5$ th perc $=13.8,97.5$ perc $=18.6$
$\mathrm{B} /$ Bmsy in last year $=1.29,2.5$ th perc $=1.09,97.5$ perc $=1.48$
Fishing mortality in last year $=0.166,2.5$ th perc $=0.144,97.5$ perc $=0.195$
F/Fmsy $=0.44,2.5$ th perc $=0.382,97.5$ perc $=0.517$
Stock status and exploitation in 2014
Biomass $=13.7, \mathrm{~B} /$ Bmsy $=1.09$, fishing mortality $\mathrm{F}=0.141$, $\mathrm{F} / \mathrm{Fmsy}=0.372$
Comment: OK (RF 21.09.16) r updated

D: Biomass

E: Exploitation rate

F: Equilibrium curve

Species: Pleuronectes platessa, stock: ple-2432
Plaice in Subdivisions 24-32 (Baltic Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/ple-2432.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 2002-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2008 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.2-0.77$ expert, , prior range for $\mathrm{k}=5.01-116$
Prior range of $q=3.81 e-05-0.00015$
Results of CMSY analysis with altogether 4431 viable trajectories for 3917 r-k pairs
$r=0.549,95 \% C L=0.399-0.754, k=38.4,95 \% C L=15.3-96.5$
MSY = 5.27, 95\% CL = 1.62-17.2
Relative biomass last year $=0.755 \mathrm{k}, 2.5 \mathrm{th}=0.512,97.5 \mathrm{th}=0.895$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.133$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.498,95 \% \mathrm{CL}=0.377-0.658, \mathrm{k}=28.6,95 \% \mathrm{CL}=19.9-41.2$
$\mathrm{MSY}=3.57,95 \% \mathrm{CL}=2.66-4.78$
Relative biomass in last year $=0.823 \mathrm{k}$, 2.5th perc $=0.63,97.5$ th perc $=0.97$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.11$
$\mathrm{q}=6.81 \mathrm{e}-05, \mathrm{lcl}=5.07 \mathrm{e}-05, \mathrm{ucl}=9.14 \mathrm{e}-05$
Results for Management (based on BSM analysis)
Fmsy $=0.249,95 \% \mathrm{CL}=0.188-0.329$ (if B > 1/2 Bmsy then Fmsy $=0.5$ r)
Fmsy $=0.249,95 \% C L=0.188-0.329$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 3.57, 95\% CL = 2.66-4.78
Bmsy = 14.3, 95\% CL = 9.95-20.6
Biomass in last year $=23.6,2.5$ th perc $=18.1,97.5$ perc $=27.8$
$B /$ Bmsy in last year $=1.65,2.5$ th perc $=1.26,97.5$ perc $=1.94$
Fishing mortality in last year $=0.0275,2.5$ th perc $=0.0233,97.5$ perc $=0.0358$
F/Fmsy $=0.11,2.5$ th perc $=0.0935,97.5$ perc $=0.144$
Stock status and exploitation in 2014
Biomass $=21.6, \mathrm{~B} / \mathrm{Bmsy}=1.51$, fishing mortality $\mathrm{F}=0.047, \mathrm{~F} / \mathrm{Fmsy}=0.189$
Comment: OK (RF 21.09.16)

D: Biomass

Year

E: Exploitation rate

Year

F: Equilibrium curve

Species: Salmo salar , stock: sal-2231
Salmon in Subdivisions 22-31 (Baltic Sea, excluding Gulf of Finland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sal-2231.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 1993-2015, abundance = None
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2010 default
Prior final relative biomass $=0.01-0.4$, default
Prior range for $r=0.13-1$ expert, , prior range for $k=3.42-108$
Results of CMSY analysis with altogether 2612 viable trajectories for 1992 r -k pairs
$r=0.393,95 \% \mathrm{CL}=0.25-0.616, \mathrm{k}=30.2,95 \% \mathrm{CL}=14.5-63.1$
MSY = 2.97, 95\% CL = 1.39-6.36
Relative biomass last year $=0.198 \mathrm{k}, 2.5 \mathrm{th}=0.0196,97.5$ th $=0.394$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.75$

Results for Management (based on CMSY analysis)
Fmsy $=0.196,95 \% C L=0.125-0.308$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.155,95 \% C L=0.0989-0.244$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 2.97, 95\% CL = $1.39-6.36$
Bmsy = 15.1, 95\% CL = 7.25-31.6
Biomass in last year $=5.98,2.5$ th perc $=0.594,97.5$ perc $=11.9$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.395,2.5$ th perc $=0.0393,97.5$ perc $=0.788$
Fishing mortality in last year $=0.132,2.5$ th perc $=0.0663,97.5$ perc $=1.33$
F/Fmsy $=0.852,2.5$ th perc $=0.427,97.5$ perc $=8.57$

Stock status and exploitation in 2014
Biomass $=5.74, \mathrm{~B} / \mathrm{Bmsy}=0.38$, fishing mortality $\mathrm{F}=0.162, \mathrm{~F} / \mathrm{Fmsy}=1.09$
Comment: OK (RF 21.09.16)

D: Biomass

Year

B: Finding viable $r-k$

E: Exploitation rate

Year

C: Analysis of viable r-k

F: Equilibrium curve

Catch sal-2231

Exploitation

Species: Salmo salar , stock: sal-32
Salmon in Subdivision 32 (Gulf of Finland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sal-32.pdf
Region: Northeast Atlantic, Baltic Sea
Catch data used from years 1987-2015 , abundance $=$ None
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass $=0.01-0.3$ in year 2005 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.13-1$ expert, , prior range for $k=0.562-17.8$

Results of CMSY analysis with altogether 2596 viable trajectories for 2255 r-k pairs
$r=0.422,95 \% C L=0.292-0.61, k=3.95,95 \% C L=2.09-7.45$
MSY $=0.416,95 \% C L=0.247-0.703$
Relative biomass last year $=0.115 \mathrm{k}, 2.5 \mathrm{th}=0.0117,97.5 \mathrm{th}=0.28$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.831$

Results for Management (based on CMSY analysis)
Fmsy $=0.211,95 \% C L=0.146-0.305$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0968,95 \% C L=0.067-0.14$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
$\mathrm{MSY}=0.416,95 \% \mathrm{CL}=0.247-0.703$
Bmsy $=1.97$, 95\% CL $=1.05-3.72$
Biomass in last year $=0.452$, 2.5th perc $=0.046,97.5$ perc $=1.1$
$B /$ Bmsy in last year $=0.229,2.5$ th perc $=0.0233,97.5$ perc $=0.559$
Fishing mortality in last year $=0.137,2.5$ th perc $=0.0562,97.5$ perc $=1.35$
F/Fmsy $=1.42,2.5$ th perc $=0.581,97.5$ perc $=13.9$

Stock status and exploitation in 2014
Biomass $=0.468, \mathrm{~B} / \mathrm{Bmsy}=0.237$, fishing mortality $\mathrm{F}=0.179$, $\mathrm{F} / \mathrm{Fmsy}=1.79$
Comment: OK (RF 21.09.16)

D: Biomass

Year

E: Exploitation rate

Year

Catch sal-32

F: Equilibrium curve

Species: Sprattus sprattus , stock: spr-2232
Sprat in Subdivisions 22-32 (Baltic Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/spr-2232.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 1974-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass=0.2-0.6 in year 1990 expert
Prior final relative biomass $=0.1-0.5$ expert
Prior range for $r=0.21-1.1$ expert, , prior range for $\mathrm{k}=433-9149$
Prior range of $q=0.72-3.31$
Results of CMSY analysis with altogether 2049 viable trajectories for 2030 r -k pairs
$r=0.461,95 \% \mathrm{CL}=0.337-0.629, \mathrm{k}=2885,95 \% \mathrm{CL}=2084-3993$
MSY $=332,95 \%$ CL $=288-384$
Relative biomass last year $=0.359 \mathrm{k}, 2.5 \mathrm{th}=0.124,97.5$ th $=0.489$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.07$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.481,95 \% \mathrm{CL}=0.337-0.688, k=2401,95 \% \mathrm{CL}=1733-3326$
MSY = 289, 95\% CL = 215-389
Relative biomass in last year $=0.332 \mathrm{k}, 2.5$ th perc $=0.253,97.5$ th perc $=0.446$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.29$
$\mathrm{q}=1.11, \mathrm{lcl}=0.843$, ucl $=1.45$
Results for Management (based on BSM analysis)
Fmsy $=0.241,95 \% \mathrm{CL}=0.168-0.344$ (if $\mathrm{B}>1 / 2 \mathrm{Bmsy}$ then $\mathrm{Fmsy}=0.5 \mathrm{r}$)
Fmsy $=0.241,95 \% C L=0.168-0.344$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=289$, 95% CL $=215-389$
Bmsy $=1200$, 95\% CL $=866-1663$
Biomass in last year $=796,2.5$ th perc $=608,97.5$ perc $=1071$
$B /$ Bmsy in last year $=0.663,2.5$ th perc $=0.506,97.5$ perc $=0.892$
Fishing mortality in last year $=0.31,2.5$ th perc $=0.231,97.5$ perc $=0.407$
F/Fmsy $=1.29,2.5$ th perc $=0.958,97.5$ perc $=1.69$
Stock status and exploitation in 2014
Biomass $=759, \mathrm{~B} /$ Bmsy $=0.632$, fishing mortality $\mathrm{F}=0.322$, $\mathrm{F} / \mathrm{Fmsy}=1.34$
Comment: OK (RF 21.09.16)

C: Analysis of viable r-k

Exploitation

Species: Salmo trutta, stock: trt-bal
Sea trout in Subdivisions 22-32 (Baltic Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/trt-bal.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 1990-2015 , abundance $=$ None
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2005 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.2$ - 0.8 default , prior range for $k=2.03-32.5$

Results of CMSY analysis with altogether 1498 viable trajectories for 1428 r-k pairs
$r=0.456,95 \% C L=0.333-0.624, k=16.7,95 \% C L=9.05-30.7$
MSY = 1.9, 95\% CL = 0.958-3.78
Relative biomass last year $=0.112 \mathrm{k}, 2.5 \mathrm{th}=0.012,97.5 \mathrm{th}=0.291$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.486$

Results for Management (based on CMSY analysis)
Fmsy $=0.228,95 \% C L=0.167-0.312$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.102,95 \% C L=0.0745-0.14$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 1.9, 95\% CL = 0.958-3.78
Bmsy $=8.34,95 \% C L=4.53-15.4$
Biomass in last year $=1.87$, 2.5th perc $=0.201,97.5$ perc $=4.85$
$B / B m s y$ in last year $=0.224,2.5$ th perc $=0.0241,97.5$ perc $=0.581$
Fishing mortality in last year $=0.101,2.5$ th perc $=0.0389,97.5$ perc $=0.94$
F/Fmsy $=0.993,2.5$ th perc $=0.382,97.5$ perc $=9.22$

Stock status and exploitation in 2014
Biomass $=1.82$, $\mathrm{B} / \mathrm{Bmsy}=0.218$, fishing mortality $\mathrm{F}=0.121$, $\mathrm{F} / \mathrm{Fmsy}=1.21$
Comment: OK (RF 21.09.16)

D: Biomass

Species: Scophthalmus maximus, stock: tur-2232
Turbot in Subdivisions 22-32 (Baltic Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/tur-2232.pdf
Region: Northeast Atlantic , Baltic Sea
Catch data used from years 1995-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01 - 0.4 in year 2000 expert
Prior final relative biomass $=0.01-0.4$, default
Prior range for $r=0.24-0.82$ expert, , prior range for $k=1.24-16.6$
Prior range of $q=0.00222-0.00811$

Results of CMSY analysis with altogether 2641 viable trajectories for 2504 r-k pairs
$r=0.564,95 \% C L=0.41-0.777, k=9.34,95 \% C L=5.02-17.4$
MSY $=1.32,95 \% \mathrm{CL}=0.655-2.65$
Relative biomass last year $=0.149 \mathrm{k}, 2.5 \mathrm{th}=0.0129,97.5$ th $=0.38$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.68$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.683,95 \% C L=0.481-0.971, k=5.22,95 \% C L=3.81-7.15$
MSY $=0.891,95 \%$ CL $=0.661-1.2$
Relative biomass in last year $=0.198 \mathrm{k}, 2.5$ th perc $=0.0794,97.5$ th perc $=0.405$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.663$
$\mathrm{q}=0.00313, \mathrm{lcl}=0.00237, \mathrm{ucl}=0.00414$

Results for Management (based on BSM analysis)
Fmsy $=0.342,95 \% C L=0.24-0.486$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.271,95 \% C L=0.191-0.385$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.891,95 \% \mathrm{CL}=0.661-1.2$
Bmsy $=2.61,95 \%$ CL $=1.9-3.57$
Biomass in last year $=1.03$, 2.5 th perc $=0.414,97.5$ perc $=2.11$
$B /$ Bmsy in last year $=0.396,2.5$ th perc $=0.159,97.5$ perc $=0.81$
Fishing mortality in last year $=0.226,2.5$ th perc $=0.111,97.5$ perc $=0.565$
F/Fmsy $=0.836,2.5$ th perc $=0.409,97.5$ perc $=2.09$

Stock status and exploitation in 2014
Biomass $=0.927, B / B m s y=0.355$, fishing mortality $F=0.273, F / F m s y=1.12$
Comment: OK (RF 21.09.16)

D: Biomass

Catch tur-2232

Exploitation

E: Exploitation rate

F: Equilibrium curve

Celtic Seas and Rockall (analyzed with CMSY_O_7m.R)

Species: Lophius budegassa, stock: anb-78ab
Black-bellied anglerfish in Divisions VIIb-k and VIIIa,b,d (West and Southwest of Ireland, Bay of Biscay)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/anb-78ab.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1986-2015 , abundance $=$ CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 2001 default
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.2-0.54$ expert, , prior range for $k=20.9-226$
Prior range of $q=1.7 e-05-5.57 e-05$

Results of CMSY analysis with altogether 2324 viable trajectories for 1540 r-k pairs
$r=0.422,95 \% C L=0.334-0.534, k=81.6,95 \% C L=57.6-115$
MSY = 8.61, 95\% CL = 6.91-10.7
Relative biomass last year $=0.407 \mathrm{k}, 2.5$ th $=0.215,97.5$ th $=0.596$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.61$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.469,95 \% C L=0.352-0.626, k=69.7,95 \% C L=52-93.3$
MSY = 8.17, 95\% CL = 7.26-9.21
Relative biomass in last year $=0.382 \mathrm{k}, 2.5$ th perc $=0.236,97.5$ th perc $=0.547$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.65$
$\mathrm{q}=2.68 \mathrm{e}-05, \mathrm{lc\mid}=2.1 \mathrm{e}-05, \mathrm{ucl}=3.42 \mathrm{e}-05$

Results for Management (based on BSM analysis)
Fmsy $=0.235,95 \% C L=0.176-0.313$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.235,95 \% C L=0.176-0.313$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 8.17, 95\% CL = 7.26-9.21
Bmsy $=34.8$, 95\% CL $=26-46.7$
Biomass in last year $=26.6,2.5$ th perc $=16.5,97.5$ perc $=38.1$
$B / B m s y$ in last year $=0.765,2.5$ th perc $=0.473,97.5$ perc $=1.09$
Fishing mortality in last year $=0.388,2.5$ th perc $=0.271,97.5$ perc $=0.627$
F/Fmsy $=1.65,2.5$ th perc $=1.15,97.5$ perc $=2.67$

Stock status and exploitation in 2014
Biomass $=29.8, \mathrm{~B} / \mathrm{Bmsy}=0.856$, fishing mortality $\mathrm{F}=0.365, \mathrm{~F} / \mathrm{Fmsy}=1.55$
Comment: OK (RF 27.9.16)

D: Biomass

Species: Lophius spp. , stock: ang-ivvi
Anglerfish (Lophius piscatorius and L. budegassa) in Subareas IV and VI and Division IIIa (North Sea, Rockall and West of Scotland, Skagerrak and Kattegat)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/ang-ivvi.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1973-2014 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass=0.01-0.4 in year 2005 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.15-0.64$ expert, , prior range for $k=50.4-860$
Prior range of $q=0.402-1.66$
Results of CMSY analysis with altogether 2324 viable trajectories for 684 r -k pairs
$r=0.432,95 \% \mathrm{CL}=0.297-0.627, \mathrm{k}=172,95 \% \mathrm{CL}=116-256$
MSY = 18.6, 95\% CL = 16.4-21.1
Relative biomass last year $=0.298 \mathrm{k}, 2.5$ th $=0.0289,97.5$ th $=0.396$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=1.13$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.376,95 \% \mathrm{CL}=0.273-0.518, \mathrm{k}=194,95 \% \mathrm{CL}=150-252$
MSY = 18.3, 95% CL = 16-20.9
Relative biomass in last year $=0.324 \mathrm{k}$, 2.5th perc $=0.24,97.5$ th perc $=0.429$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.12$
$\mathrm{q}=0.719, \mathrm{cl}=0.542, \mathrm{ucl}=0.953$
Results for Management (based on BSM analysis)
Fmsy $=0.188,95 \% \mathrm{CL}=0.136-0.259$ (if $B>1 / 2 \mathrm{Bmsy}$ then $\mathrm{Fmsy}=0.5 \mathrm{r}$)
Fmsy $=0.188,95 \% \mathrm{CL}=0.136-0.259$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 18.3, 95\% CL = 16-20.9
Bmsy $=97.2$, 95% CL $=74.8-126$
Biomass in last year $=62.9,2.5$ th perc $=46.7,97.5$ perc $=83.5$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.648,2.5$ th perc $=0.481,97.5$ perc $=0.859$
Fishing mortality in last year $=0.21,2.5$ th perc $=0.158,97.5$ perc $=0.283$
F/Fmsy $=1.12,2.5$ th perc $=0.841,97.5$ perc $=1.5$
Stock status and exploitation in 2014
Biomass $=62.9, \mathrm{~B} / \mathrm{Bmsy}=0.648$, fishing mortality $\mathrm{F}=0.21, \mathrm{~F} / \mathrm{Fmsy}=1.12$
Comment: OK (RF 27.09.16)

Exploitation

Species: Molva dypterygia, stock: bli-5b67
Blue ling in subareas 6-7 and Division 5.b (Celtic Seas, English Channel, and Faroes grounds)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/bli-5b67.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1966-2015, abundance = CPUE
Prior initial relative biomass $=0.6-0.9$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 1995 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.19-0.48$ expert, , prior range for $k=44-438$
Prior range of $q=1.58-5$

Results of CMSY analysis with altogether 3318 viable trajectories for 1369 r-k pairs
$r=0.347,95 \% C L=0.275-0.439, k=147,95 \% C L=119-183$
MSY = 12.8, 95\% CL = 12-13.7
Relative biomass last year $=0.488 \mathrm{k}, 2.5 \mathrm{th}=0.217,97.5 \mathrm{th}=0.595$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.221$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.306,95 \% C L=0.245-0.382, k=149,95 \% C L=123-181$
MSY = 11.4, 95\% CL = 9.99-13
Relative biomass in last year $=0.392 \mathrm{k}, 2.5$ th perc $=0.331,97.5$ th perc $=0.462$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.308$
$q=1.64, \mathrm{lcl}=1.35, \mathrm{ucl}=2$

Results for Management (based on BSM analysis)
Fmsy $=0.153,95 \% C L=0.123-0.191$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.153,95 \% C L=0.123-0.191$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 11.4, 95\% CL = 9.99-13
Bmsy $=74.7$, 95\% CL $=61.7-90.4$
Biomass in last year $=58.6,2.5$ th perc $=49.4,97.5$ perc $=68.9$
$B /$ Bmsy in last year $=0.784,2.5$ th perc $=0.661,97.5$ perc $=0.923$
Fishing mortality in last year $=0.0471,2.5$ th perc $=0.04,97.5$ perc $=0.0559$
F/Fmsy $=0.308,2.5$ th perc $=0.262,97.5$ perc $=0.365$

Stock status and exploitation in 2014
Biomass $=55.2$, $\mathrm{B} / \mathrm{Bmsy}=0.74$, fishing mortality $\mathrm{F}=0.0534$, $\mathrm{F} / \mathrm{Fmsy}=0.349$
Comment: OK (RF 27.09.16)

Species: Capros aper, stock: boc-nea
Boarfish in Subareas VI-VIII (Celtic Seas and the English Channel, Bay of Biscay)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/boc-nea.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 2001-2014 , abundance $=$ CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 2008 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.18-1.7$ expert, , prior range for $k=53.6-2011$
Prior range of $q=0.00484-0.0296$

Results of CMSY analysis with altogether 2559 viable trajectories for 2422 r-k pairs
$r=0.928,95 \% C L=0.553-1.56, k=614,95 \% C L=200-1884$
MSY = 142, 95\% CL = 43.6-465
Relative biomass last year $=0.192 \mathrm{k}, 2.5 \mathrm{th}=0.0155,97.5$ th $=0.39$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.27$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.443,95 \% C L=0.287-0.686, k=806,95 \% C L=509-1276$
MSY = 89.4, 95\% CL = 45.3-176
Relative biomass in last year $=0.125 \mathrm{k}, 2.5$ th perc $=0.0723,97.5$ th perc $=0.225$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.02$
$q=0.00822, \mathrm{lcl}=0.00607, u c l=0.0111$

Results for Management (based on BSM analysis)
Fmsy $=0.222,95 \% C L=0.143-0.343$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.111,95 \% C L=0.0718-0.172$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 89.4, 95\% CL = 45.3-176
Bmsy $=403$, 95\% CL $=255-638$
Biomass in last year $=101,2.5$ th perc $=58.3,97.5$ perc $=181$
$B / B m s y$ in last year $=0.251,2.5$ th perc $=0.145,97.5$ perc $=0.449$
Fishing mortality in last year $=0.448,2.5$ th perc $=0.25,97.5$ perc $=0.776$
F/Fmsy $=4.03,2.5$ th perc $=2.25,97.5$ perc $=6.98$

Stock status and exploitation in 2014
Biomass $=101$, $\mathrm{B} / \mathrm{Bmsy}=0.251$, fishing mortality $\mathrm{F}=0.448$, $\mathrm{F} / \mathrm{Fmsy}=4.03$
Comment: OK (RF 27.09.16)

D: Biomass

Year

Catch boc-nea

Exploitation

E: Exploitation rate

Year

F: Equilibrium curve

Species: Gadus morhua , stock: cod-7e-k
Cod in Divisions VIle-k (Celtic Sea cod)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/cod-7e-k.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1971-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2009 default
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.23-0.96$ expert, , prior range for $k=17.3-288$
Prior range of $q=0.329-1.34$
Results of CMSY analysis with altogether 2215 viable trajectories for 1346 r -k pairs
$r=0.525,95 \% \mathrm{CL}=0.369-0.746, \mathrm{k}=75.5,95 \% \mathrm{CL}=55.6-102$
MSY = 9.9, 95\% CL = 9.08-10.8
Relative biomass last year $=0.284 \mathrm{k}, 2.5 \mathrm{th}=0.0211,97.5 \mathrm{th}=0.395$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=0.957$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.581,95 \% \mathrm{CL}=0.42-0.804, \mathrm{k}=58.8,95 \% \mathrm{CL}=44.4-77.8$
MSY = 8.55, 95\% CL = 6.8-10.7
Relative biomass in last year $=0.226 \mathrm{k}$, 2.5th perc $=0.171,97.5$ th perc $=0.296$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.22$
$\mathrm{q}=0.439$, $\mathrm{lcl}=0.346$, ucl $=0.557$
Results for Management (based on BSM analysis)
Fmsy $=0.291,95 \% C L=0.21-0.402$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.262,95 \% C L=0.19-0.363$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 8.55, 95\% CL = 6.8-10.7
Bmsy $=29.4,95 \%$ CL $=22.2-38.9$
Biomass in last year $=13.3,2.5$ th perc $=10,97.5$ perc $=17.4$
$\mathrm{B} /$ Bmsy in last year $=0.451,2.5$ th perc $=0.341,97.5$ perc $=0.592$
Fishing mortality in last year $=0.355,2.5$ th perc $=0.271,97.5$ perc $=0.47$
F/Fmsy $=1.35,2.5$ th perc $=1.03,97.5$ perc $=1.79$
Stock status and exploitation in 2014
Biomass $=13.3, \mathrm{~B} / \mathrm{Bmsy}=0.452$, fishing mortality $\mathrm{F}=0.347$, $\mathrm{F} / \mathrm{Fmsy}=1.32$
Comment: OK (RF 27.09.16)

B: Finding viable r-k

C: Analysis of viable r-k

E: Exploitation rate

Year

Biomass

Exploitation

Species: Gadus morhua , stock: cod-iris
Cod in Division VIIa (Irish Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/cod-iris.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1968-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 1988 expert
Prior final relative biomass $=0.01-0.25$ expert
Prior range for $r=0.23-0.96$ expert, , prior range for $k=13.8-231$
Prior range of $q=0.292-1.19$
Results of CMSY analysis with altogether 538 viable trajectories for 523 r -k pairs
$r=0.436,95 \% \mathrm{CL}=0.317-0.599, \mathrm{k}=87.5,95 \% \mathrm{CL}=66.9-115$
MSY = 9.54, 95\% CL = 8.5-10.7
Relative biomass last year $=0.0829 \mathrm{k}, 2.5$ th $=0.0138,97.5$ th $=0.227$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.226$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.638,95 \% \mathrm{CL}=0.481-0.845, \mathrm{k}=60.9,95 \% \mathrm{CL}=46.9-79.1$
MSY = 9.71, 95\% CL = 8.91-10.6
Relative biomass in last year $=0.188 \mathrm{k}$, 2.5th perc $=0.129,97.5$ th perc $=0.263$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.105$
$\mathrm{q}=0.446, \mathrm{lcl}=0.35, \mathrm{ucl}=0.567$
Results for Management (based on BSM analysis)
Fmsy $=0.319,95 \% C L=0.241-0.422$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.24,95 \% C L=0.181-0.318$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 9.71, 95\% CL = 8.91-10.6
Bmsy $=30.4,95 \% \mathrm{CL}=23.4-39.6$
Biomass in last year $=11.5,2.5$ th perc $=7.87,97.5$ perc $=16$
$\mathrm{B} /$ Bmsy in last year $=0.377,2.5$ th perc $=0.259,97.5$ perc $=0.526$
Fishing mortality in last year $=0.0336,2.5$ th perc $=0.024,97.5$ perc $=0.0489$
F/Fmsy $=0.14,2.5$ th perc $=0.1,97.5$ perc $=0.204$
Stock status and exploitation in 2014
Biomass $=9.06, \mathrm{~B} / \mathrm{Bmsy}=0.297$, fishing mortality $\mathrm{F}=0.04, \mathrm{~F} / \mathrm{Fmsy}=0.211$
Comment: OK (RF 27.09.16). Discards 2007 ff added to landings. Harvest rate strongly underestimates final F .

E: Exploitation rate

Exploitation

Species: Gadus morhua , stock: cod-rock
Cod in Division VIb (Rockall)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/cod-rock.pdf
Region: Northeast Atlantic , Rockall
Catch data used from years 1984-2014 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.2-0.6 in year 1995 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.23-0.96$ expert, , prior range for $k=1.69-28.2$
Prior range of $q=0.00822-0.0336$
Results of CMSY analysis with altogether 2025 viable trajectories for 1844 r -k pairs
$r=0.497,95 \%$ CL $=0.335-0.736, \mathrm{k}=9.76,95 \% \mathrm{CL}=6.88-13.9$
MSY = 1.21, 95\% CL = 0.981-1.5
Relative biomass last year $=0.0766 \mathrm{k}, 2.5 \mathrm{th}=0.0116,97.5 \mathrm{th}=0.275$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.0933$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.572,95 \% \mathrm{CL}=0.378-0.865, \mathrm{k}=8.56,95 \% \mathrm{CL}=6-12.2$
MSY = 1.22, 95\% CL = 0.971-1.54
Relative biomass in last year $=0.0118 \mathrm{k}$, 2.5th perc $=0.0108,97.5$ th perc $=0.0206$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.519$
$q=0.0106, \mathrm{lcl}=0.00805, \mathrm{ucl}=0.0141$
Results for Management (based on BSM analysis)
Fmsy $=0.286,95 \% C L=0.189-0.433$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0135,95 \% C L=0.00892-0.0204$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=1.22,95 \% \mathrm{CL}=0.971-1.54$
Bmsy $=4.28$, 95% CL $=3-6.11$
Biomass in last year $=0.101,2.5$ th perc $=0.0929,97.5$ perc $=0.176$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.0236,2.5$ th perc $=0.0217,97.5$ perc $=0.0411$
Fishing mortality in last year $=0.148,2.5$ th perc $=0.0852,97.5$ perc $=0.161$
F/Fmsy $=11,2.5$ th perc $=6.31,97.5$ perc $=12$
Stock status and exploitation in 2014
Biomass $=0.101, \mathrm{~B} / \mathrm{Bmsy}=0.0236$, fishing mortality $\mathrm{F}=0.148, \mathrm{~F} / \mathrm{Fmsy}=11$
Comment: OK (RF 27.09.16)

D: Biomass

E: Exploitation rate

Year

C: Analysis of viable r-k

F: Equilibrium curve

Species: Gadus morhua , stock: cod-scow
Cod in Division Vla (West of Scotland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/cod-scow.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1981-2014 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.3 in year 2005 expert
Prior final relative biomass $=0.01-0.2$ expert
Prior range for $r=0.23-0.96$ expert, , prior range for $k=25.2-420$
Prior range of $q=0.411-1.68$
Results of CMSY analysis with altogether 1077 viable trajectories for 1031 r -k pairs
$r=0.466,95 \%$ CL $=0.372-0.585, \mathrm{k}=197,95 \% \mathrm{CL}=112-347$
MSY $=23,95 \%$ CL $=11.8-44.8$
Relative biomass last year $=0.0553 \mathrm{k}, 2.5$ th $=0.0111,97.5$ th $=0.183$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.63$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.469,95 \% \mathrm{CL}=0.315-0.7, \mathrm{k}=145,95 \% \mathrm{CL}=98.3-215$
MSY = 17.1, 95\% CL = 10.9-26.6
Relative biomass in last year $=0.0387 \mathrm{k}$, 2.5th perc $=0.0255,97.5$ th perc $=0.0513$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.26$
$\mathrm{q}=0.504, \mathrm{lcl}=0.404$, ucl $=0.629$
Results for Management (based on BSM analysis)
Fmsy $=0.235,95 \% C L=0.157-0.35$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0363,95 \% C L=0.0244-0.0542$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 17.1, 95\% CL = 10.9-26.6
Bmsy $=72.7,95 \%$ CL $=49.2-107$
Biomass in last year $=5.62,2.5$ th perc $=3.71,97.5$ perc $=7.45$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.0774,2.5$ th perc $=0.051,97.5$ perc $=0.103$
Fishing mortality in last year $=0.297,2.5$ th perc $=0.224,97.5$ perc $=0.45$
F/Fmsy $=8.16,2.5$ th perc $=6.16,97.5$ perc $=12.4$
Stock status and exploitation in 2014
Biomass $=5.62, \mathrm{~B} / \mathrm{Bmsy}=0.0774$, fishing mortality $\mathrm{F}=0.297, \mathrm{~F} / \mathrm{Fmsy}=8.16$
Comment: OK (RF 27.09.16)

Year

B: Finding viable $r-k$

E: Exploitation rate

Year

C: Analysis of viable r-k

F: Equilibrium curve

Catch cod-scow

Exploitation

Species: Melanogrammus aeglefinus, stock: had-7b-k Haddock in Divisions VIIb,c,e-k
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/had-7b-k.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1993-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.2-0.6 in year 2005 expert
Prior final relative biomass $=0.4-0.8$ expert
Prior range for $r=0.23$ - 1 expert, , prior range for $k=55.1$ - 1437
Prior range of $q=0.247-1.03$

Results of CMSY analysis with altogether 2049 viable trajectories for 1438 r-k pairs
$r=0.449,95 \% C L=0.363-0.556, k=151,95 \% C L=113-201$
MSY = 17 , 95\% CL = 14.7-19.6
Relative biomass last year $=0.452 \mathrm{k}, 2.5 \mathrm{th}=0.402,97.5 \mathrm{th}=0.567$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.951$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.441,95 \% C L=0.315-0.616, k=152,95 \% C L=111-208$
MSY = 16.7 , 95\% CL = 13.4-20.8
Relative biomass in last year $=0.519 \mathrm{k}, 2.5$ th perc $=0.37$, 97.5 th perc $=0.737$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.88$
$\mathrm{q}=0.368, \mathrm{lcl}=0.273, \mathrm{ucl}=0.497$

Results for Management (based on BSM analysis)
Fmsy $=0.22,95 \% C L=0.158-0.308$ (if $B>1 / 2$ Bmsy then $F m s y=0.5 r$)
Fmsy $=0.22$, $95 \% C L=0.158-0.308$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 16.7, 95\% CL = 13.4-20.8
Bmsy $=75.8$, 95\% CL $=55.3-104$
Biomass in last year $=78.6,2.5$ th perc $=56.1,97.5$ perc $=112$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=1.04,2.5$ th perc $=0.741,97.5$ perc $=1.47$
Fishing mortality in last year $=0.194,2.5$ th perc $=0.136,97.5$ perc $=0.271$
F/Fmsy $=0.88,2.5$ th perc $=0.619,97.5$ perc $=1.23$

Stock status and exploitation in 2014
Biomass $=79.9, \mathrm{~B} / \mathrm{Bmsy}=1.05$, fishing mortality $\mathrm{F}=0.163, \mathrm{~F} / \mathrm{Fmsy}=0.74$
Comment: OK (RF 27.09.16)

B: Finding viable r-k

C: Analysis of viable r-k

Species: Melanogrammus aeglefinus, stock: had-iris Haddock in Division VIla (Irish Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/had-iris.pdf Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1995-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.3$ expert
Prior intermediate rel. biomass= $0.01-0.3$ in year 2010 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.23$ - 1 expert, , prior range for $k=4.17-72.6$
Prior range of $q=0.000305-0.00127$

Results of CMSY analysis with altogether 2172 viable trajectories for 2055 r-k pairs
$r=0.667,95 \% C L=0.457-0.973, k=35.2,95 \% C L=16.3-75.9$
MSY = 5.87, 95\% CL = 2.51-13.7
Relative biomass last year $=0.112 \mathrm{k}, 2.5 \mathrm{th}=0.0157,97.5$ th $=0.382$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.407$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.777,95 \% C L=0.537-1.12, k=19.9,95 \% C L=13.3-29.6$
MSY = 3.86, 95\% CL = 2.49-5.98
Relative biomass in last year $=0.198 \mathrm{k}, 2.5$ th perc $=0.0532$, 97.5 th perc $=0.436$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.545$
$q=0.000427, \mathrm{lcl}=0.000315, \mathrm{ucl}=0.000578$

Results for Management (based on BSM analysis)
Fmsy $=0.388,95 \% C L=0.269-0.561$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.308,95 \% C L=0.213-0.445$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 3.86, 95\% CL = 2.49-5.98
Bmsy $=9.93$, 95\% CL $=6.67-14.8$
Biomass in last year $=3.94,2.5$ th perc $=1.06,97.5$ perc $=8.67$
$B /$ Bmsy in last year $=0.397,2.5$ th perc $=0.106,97.5$ perc $=0.873$
Fishing mortality in last year $=0.212,2.5$ th perc $=0.0961,97.5$ perc $=0.788$
F/Fmsy $=0.687,2.5$ th perc $=0.312,97.5$ perc $=2.56$

Stock status and exploitation in 2014
Biomass $=3.07, \mathrm{~B} / \mathrm{Bmsy}=0.309$, fishing mortality $\mathrm{F}=0.169, \mathrm{~F} / \mathrm{Fmsy}=0.704$
Comment: OK (RF 27.09.16)

E: Exploitation rate

Catch had-iris

Exploitation

C: Analysis of viable r-k

F: Equilibrium curve

Species: Melanogrammus aeglefinus , stock: had-rock Haddock in Division VIb (Rockall)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/had-rock.pdf
Region: Northeast Atlantic, Rockall
Catch data used from years 1991-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= $0.01-0.4$ in year 2011 default
Prior final relative biomass $=0.01-0.4$, default
Prior range for $r=0.23-1$ expert, , prior range for $k=18.9-328$
Prior range of $q=0.873-3.64$

Results of CMSY analysis with altogether 2710 viable trajectories for 2398 r-k pairs
$r=0.533,95 \% C L=0.351-0.809, k=130,95 \% C L=73.7-229$
MSY = 17.3, 95\% CL = 9.59-31.2
Relative biomass last year $=0.133 \mathrm{k}, 2.5 \mathrm{th}=0.0145,97.5 \mathrm{th}=0.388$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.5$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.851,95 \% C L=0.659-1.1, k=79.8,95 \% C L=61.9-103$
MSY = 17 , $95 \% \mathrm{CL}=14.4-20$
Relative biomass in last year $=0.122 \mathrm{k}, 2.5$ th perc $=0.0613,97.5$ th perc $=0.243$
Exploitation $F /(r / 2)$ in last year $=0.718$
$\mathrm{q}=1.04, \mathrm{lcl}=0.822, \mathrm{ucl}=1.33$

Results for Management (based on BSM analysis)
Fmsy $=0.425,95 \% C L=0.33-0.549$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.208,95 \% C L=0.161-0.268$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 17, 95\% CL = 14.4-20
Bmsy $=39.9$, 95\% CL $=31-51.4$
Biomass in last year $=9.73,2.5$ th perc $=4.89,97.5$ perc $=19.4$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.244,2.5$ th perc $=0.123,97.5$ perc $=0.485$
Fishing mortality in last year $=0.305,2.5$ th perc $=0.154,97.5$ perc $=0.608$
F/Fmsy $=1.47,2.5$ th perc $=0.74,97.5$ perc $=2.93$
Stock status and exploitation in 2014
Biomass $=8.46, B / B m s y=0.212$, fishing mortality $F=0.23, F / F m s y=1.28$
Comment: OK (RF 27.09.16)

D: Biomass

Catch had-rock

E: Exploitation rate

F: Equilibrium curve

Species: Clupea harengus, stock: her-67bc
Herring in Divisions VIa and VIIb,c (West of Scotland, West of Ireland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/her-67bc.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1957-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2001 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.16-1$ expert, , prior range for $k=220-5619$
Prior range of $q=2.41-12.2$

Results of CMSY analysis with altogether 127 viable trajectories for 121 r-k pairs
$r=0.229,95 \% C L=0.198-0.264, k=1686,95 \% C L=1398-2033$
MSY = 96.4, 95\% CL = 88.5-105
Relative biomass last year $=0.336 \mathrm{k}, 2.5 \mathrm{th}=0.102,97.5 \mathrm{th}=0.388$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.381$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.457,95 \% C L=0.337-0.621, k=808,95 \% C L=639-1022$
MSY = 92.3, 95\% CL = 75.4-113
Relative biomass in last year $=0.296 \mathrm{k}, 2.5$ th perc $=0.239,97.5$ th perc $=0.354$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.363$
$\mathrm{q}=1.08, \mathrm{lc\mid}=0.898, \mathrm{ucl}=1.3$

Results for Management (based on BSM analysis)
Fmsy $=0.229,95 \% C L=0.168-0.31$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.229,95 \% C L=0.168-0.31$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 92.3, 95\% CL = 75.4-113
Bmsy $=404$, 95\% CL = 320-511
Biomass in last year $=239,2.5$ th perc $=193,97.5$ perc $=286$
$B / B m s y$ in last year $=0.593,2.5$ th perc $=0.478,97.5$ perc $=0.707$
Fishing mortality in last year $=0.0831,2.5$ th perc $=0.0696,97.5$ perc $=0.103$
F/Fmsy $=0.363,2.5$ th perc $=0.304,97.5$ perc $=0.451$

Stock status and exploitation in 2014
Biomass $=254$, $\mathrm{B} / \mathrm{Bmsy}=0.63$, fishing mortality $\mathrm{F}=0.107$, $\mathrm{F} / \mathrm{Fmsy}=0.467$
Comment: OK (RF 27.09.16)

C: Analysis of viable r-k

E: Exploitation rate

F: Equilibrium curve

Species: Clupea harengus, stock: her-irls
Herring in Division VIIa South of $52^{\circ} 30^{\prime} \mathrm{N}$ and VIIg,h,j,k
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/her-irls.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1958-2015, abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ default
Prior intermediate rel. biomass= 0.01 - 0.4 in year 2002 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.16-1$ expert, , prior range for $k=72-2757$
Prior range of $q=1.02-5.18$

Results of CMSY analysis with altogether 4021 viable trajectories for 1440 r-k pairs
$r=0.455,95 \% C L=0.322-0.642, k=186,95 \% C L=126-274$
MSY = 21.1, 95\% CL = 19.4-23.1
Relative biomass last year $=0.746 \mathrm{k}, 2.5 \mathrm{th}=0.582,97.5$ th $=0.805$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.572$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.628,95 \% C L=0.49-0.806, k=151,95 \% C L=121-190$
MSY = 23.8, 95\% CL = 21.3-26.5
Relative biomass in last year $=0.591 \mathrm{k}, 2.5$ th perc $=0.513,97.5$ th perc $=0.687$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.654$
$\mathrm{q}=1.21, \mathrm{lc\mid}=0.97, \mathrm{ucl}=1.51$

Results for Management (based on BSM analysis)
Fmsy $=0.314,95 \% C L=0.245-0.403$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.314,95 \% C L=0.245-0.403$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 23.8, 95\% CL = 21.3-26.5
Bmsy $=75.6$, 95\% CL $=60.3-94.9$
Biomass in last year $=89.4$, 2.5th perc $=77.6,97.5$ perc $=104$
$B /$ Bmsy in last year $=1.18,2.5$ th perc $=1.03,97.5$ perc $=1.37$
Fishing mortality in last year $=0.205,2.5$ th perc $=0.177,97.5$ perc $=0.237$
F/Fmsy $=0.654,2.5$ th perc $=0.563,97.5$ perc $=0.753$

Stock status and exploitation in 2014
Biomass $=110$, $B / B m s y=1.45$, fishing mortality $F=0.179$, F/Fmsy $=0.569$
Comment: OK (RF 27.09.16)

B: Finding viable r-k

C: Analysis of viable r-k

D: Biomass

Catch her-irls

Species: Clupea harengus, stock: her-nirs
Herring in Division VIIa North of $52^{\circ} 30^{\prime} \mathrm{N}$ (Irish Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/her-nirs.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1961-2015, abundance = CPUE
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass= 0.01 - 0.4 in year 2003 default
Prior final relative biomass $=0.1-0.5$ expert
Prior range for $r=0.16-1$ expert, , prior range for $k=29.6-757$
Prior range of $q=0.62-3.13$

Results of CMSY analysis with altogether 528 viable trajectories for $514 \mathrm{r}-\mathrm{k}$ pairs
$r=0.309,95 \% C L=0.249-0.382, k=181,95 \% C L=134-243$
MSY = 14 , 95\% CL = 11.9-16.4
Relative biomass last year $=0.29 \mathrm{k}, 2.5 \mathrm{th}=0.11,97.5 \mathrm{th}=0.479$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.614$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.514,95 \% C L=0.373-0.709, k=97.4,95 \% C L=76.2-124$
MSY = 12.5, 95\% CL = 9.98-15.7
Relative biomass in last year $=0.308 \mathrm{k}, 2.5$ th perc $=0.265,97.5$ th perc $=0.357$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.632$
$\mathrm{q}=0.452, \mathrm{lcl}=0.357, \mathrm{ucl}=0.572$

Results for Management (based on BSM analysis)
Fmsy $=0.257,95 \% C L=0.186-0.355$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.257,95 \% C L=0.186-0.355$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 12.5, 95\% CL = 9.98-15.7
Bmsy $=48.7$, 95\% CL $=38.1-62.2$
Biomass in last year $=30,2.5$ th perc $=25.8,97.5$ perc $=34.8$
$B / B m s y$ in last year $=0.616,2.5$ th perc $=0.529,97.5$ perc $=0.714$
Fishing mortality in last year $=0.162,2.5$ th perc $=0.14,97.5$ perc $=0.189$
F/Fmsy $=0.632,2.5$ th perc $=0.545,97.5$ perc $=0.735$

Stock status and exploitation in 2014
Biomass $=34.9, \mathrm{~B} / \mathrm{Bmsy}=0.716$, fishing mortality $\mathrm{F}=0.149, \mathrm{~F} / \mathrm{Fmsy}=0.58$
Comment: OK (RF 27.09.16)

E: Exploitation rate

Species: Lepidorhombus spp. , stock: meg-rock
Megrim (Lepidorhombus spp.) in Division VIb (Rockall)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/meg-rock.pdf
Region: Northeast Atlantic , Rockall
Catch data used from years 1990-2014, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.3 in year 2005 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=1.27-20.3$
Prior range of $q=1.42-5.68$
Results of CMSY analysis with altogether 3930 viable trajectories for 2754 r -k pairs
$r=0.505,95 \% C L=0.348-0.733, k=7.13,95 \% C L=4.45-11.4$
MSY = 0.9, 95\% CL = 0.635-1.28
Relative biomass last year $=0.464 \mathrm{k}, 2.5 \mathrm{th}=0.211,97.5 \mathrm{th}=0.594$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.337$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.665,95 \% \mathrm{CL}=0.462-0.959, \mathrm{k}=5.39,95 \% \mathrm{CL}=3.84-7.57$
MSY = 0.897, 95\% CL = 0.771-1.04
Relative biomass in last year $=0.381 \mathrm{k}$, 2.5th perc $=0.187,97.5$ th perc $=0.639$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.502$
$\mathrm{q}=2.07, \mathrm{lcl}=1.51$, ucl $=2.85$
Results for Management (based on BSM analysis)
Fmsy $=0.333,95 \% C L=0.231-0.479$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.333,95 \% C L=0.231-0.479$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 0.897, 95\% CL = 0.771-1.04
Bmsy $=2.7,95 \% \mathrm{CL}=1.92-3.78$
Biomass in last year $=2.05,2.5$ th perc $=1.01,97.5$ perc $=3.44$
$\mathrm{B} /$ Bmsy in last year $=0.761,2.5$ th perc $=0.375,97.5$ perc $=1.28$
Fishing mortality in last year $=0.167,2.5$ th perc $=0.0996,97.5$ perc $=0.339$
F/Fmsy $=0.502,2.5$ th perc $=0.299,97.5$ perc $=1.02$
Stock status and exploitation in 2014
Biomass $=2.05, \mathrm{~B} / \mathrm{Bmsy}=0.761$, fishing mortality $\mathrm{F}=0.167, \mathrm{~F} / \mathrm{Fmsy}=0.502$
Comment: OK (RF 27.09.16)

D: Biomass

E: Exploitation rate

F: Equilibrium curve

Species: Lepidorhombus whiffiagonis, stock: mgw-78
Megrim in Divisions VIIb-k and VIIIa, b, d (West and Southwest of Ireland, Bay of Biscay)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/mgw-78.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1984-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01 - 0.4 in year 2006 expert
Prior final relative biomass $=0.3-0.7$ expert
Prior range for $r=0.34-1$ expert, , prior range for $k=20-235$
Prior range of $q=0.443-1.52$

Results of CMSY analysis with altogether 1576 viable trajectories for 1152 r-k pairs
$r=0.756,95 \% C L=0.582-0.982, k=102,95 \% C L=73.7-140$
MSY = 19.2, 95\% CL = 16.8-22
Relative biomass last year $=0.458 \mathrm{k}, 2.5 \mathrm{th}=0.312,97.5$ th $=0.663$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.945$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.633,95 \% C L=0.479-0.835, k=120,95 \% C L=90.5-160$
MSY = 19 , 95\% CL = 17.3-20.9
Relative biomass in last year $=0.601 \mathrm{k}, 2.5$ th perc $=0.478,97.5$ th perc $=0.713$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.571$
$\mathrm{q}=0.944, \mathrm{lcl}=0.733, \mathrm{ucl}=1.22$

Results for Management (based on BSM analysis)
Fmsy $=0.316,95 \% C L=0.24-0.418$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.316,95 \% C L=0.24-0.418$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 19, 95\% CL = 17.3-20.9
Bmsy $=60.2$, 95\% CL $=45.3-80$
Biomass in last year $=72.3,2.5$ th perc $=57.6,97.5$ perc $=85.8$
B/Bmsy in last year $=1.2,2.5$ th perc $=0.957,97.5$ perc $=1.43$
Fishing mortality in last year $=0.181,2.5$ th perc $=0.152,97.5$ perc $=0.227$
F/Fmsy $=0.571,2.5$ th perc $=0.482,97.5$ perc $=0.718$

Stock status and exploitation in 2014
Biomass $=69.2$, $\mathrm{B} / \mathrm{Bmsy}=1.15$, fishing mortality $\mathrm{F}=0.229, \mathrm{~F} / \mathrm{Fmsy}=0.723$
Comment: OK (RF 27.09.16)

D: Biomass

Exploitation

Species: Nephrops norvegicus, stock: nep-11
Norway lobster in Division VIa - FU 11 (West of Scotland, North Minch)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/nep-11.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1990-2014 , abundance $=$ CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2003 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.015-0.1$ default , prior range for $k=43.7-1165$
Prior range of $q=0.00728-0.0376$

Results of CMSY analysis with altogether 17185 viable trajectories for $6008 \mathrm{r}-\mathrm{k}$ pairs
$r=0.062,95 \% C L=0.0397-0.097, k=371,95 \% C L=127-1083$
MSY = 5.75, 95\% CL = 1.69-19.6
Relative biomass last year $=0.293 \mathrm{k}, 2.5 \mathrm{th}=0.0363,97.5 \mathrm{th}=0.397$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.07$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.0509,95 \% C L=0.0229-0.113, k=295,95 \% C L=174-498$
MSY = 3.74, 95\% CL = $1.67-8.41$
Relative biomass in last year $=0.285 \mathrm{k}, 2.5$ th perc $=0.156,97.5$ th perc $=0.435$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.55$
$q=0.0152, \mathrm{lc\mid}=0.0106, \mathrm{ucl}=0.0217$

Results for Management (based on BSM analysis)
Fmsy $=0.0254,95 \% C L=0.0115-0.0564$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0254,95 \% C L=0.0115-0.0564$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=3.74,95 \% C L=1.67-8.41$
Bmsy $=147$, 95\% CL = 87-249
Biomass in last year $=84,2.5$ th perc $=45.9,97.5$ perc $=128$
$B / B m s y$ in last year $=0.571,2.5$ th perc $=0.312,97.5$ perc $=0.869$
Fishing mortality in last year $=0.0394,2.5$ th perc $=0.0259,97.5$ perc $=0.0722$
F/Fmsy $=1.55,2.5$ th perc $=1.02,97.5$ perc $=2.84$

Stock status and exploitation in 2014
Biomass $=84, B / B m s y=0.571$, fishing mortality $F=0.0394$, $F / F m s y=1.55$
Comment: OK (RF 27.09.16)

D: Biomass

Exploitation

B: Finding viable $r-k$

E: Exploitation rate

C: Analysis of viable r-k

F: Equilibrium curve

Species: Nephrops norvegicus, stock: nep-12
Norway lobster in Division VIa - FU 12 (West of Scotland, South Minch)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/nep-12.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1990-2014 , abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2004 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=7.2-115$
Prior range of $q=0.0948-0.379$

Results of CMSY analysis with altogether 2319 viable trajectories for 1652 r-k pairs
$r=0.553,95 \% C L=0.401-0.762, k=36.6,95 \% C L=24.5-54.9$
MSY = 5.06, 95\% CL = 4.3-5.96
Relative biomass last year $=0.296 \mathrm{k}, 2.5 \mathrm{th}=0.0254$, 97.5 th $=0.396$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.26$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.619,95 \% C L=0.445-0.863, k=32.1,95 \% C L=22-46.7$
MSY = 4.97, 95\% CL = 4.33-5.69
Relative biomass in last year $=0.353 \mathrm{k}, 2.5$ th perc $=0.218,97.5$ th perc $=0.47$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.967$
$\mathrm{q}=0.153, \mathrm{lcl}=0.116, \mathrm{ucl}=0.2$

Results for Management (based on BSM analysis)
Fmsy $=0.31,95 \% C L=0.222-0.431$ (if $B>1 / 2$ Bmsy then $F m s y=0.5 r$)
Fmsy $=0.31,95 \% C L=0.222-0.431$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=4.97,95 \% C L=4.33-5.69$
Bmsy $=16$, 95% CL $=11-23.3$
Biomass in last year $=11.3,2.5$ th perc $=7,97.5$ perc $=15.1$
$B /$ Bmsy in last year $=0.707,2.5$ th perc $=0.437,97.5$ perc $=0.94$
Fishing mortality in last year $=0.3,2.5$ th perc $=0.225,97.5$ perc $=0.485$
F/Fmsy $=0.967,2.5$ th perc $=0.727,97.5$ perc $=1.57$

Stock status and exploitation in 2014
Biomass $=11.3$, $\mathrm{B} / \mathrm{Bmsy}=0.707$, fishing mortality $\mathrm{F}=0.3$, $\mathrm{F} / \mathrm{Fmsy}=0.967$
Comment: OK (RF 27.09.16)

D: Biomass

B: Finding viable r-k

E: Exploitation rate

F: Equilibrium curve

Exploitation

Species: Nephrops norvegicus, stock: nep-13
Norway lobster in Division VIa - FU 13 (West of Scotland, the Firth of Clyde, and the Sound of Jura)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/nep-13.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1990-2014 , abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2004 expert
Prior final relative biomass $=0.3-0.7$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=9.48-152$
Prior range of $q=0.0406-0.162$

Results of CMSY analysis with altogether 2827 viable trajectories for 1511 r-k pairs
$r=0.513,95 \% C L=0.342-0.771, k=48.6,95 \% C L=30.1-78.5$
MSY = 6.24, 95\% CL = 4.37-8.9
Relative biomass last year $=0.423 \mathrm{k}, 2.5 \mathrm{th}=0.305,97.5$ th $=0.672$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.3$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.598,95 \% C L=0.44-0.811, k=42.3,95 \% C L=32.1-55.7$
MSY = 6.32, 95\% CL = 5.42-7.37
Relative biomass in last year $=0.543 \mathrm{k}, 2.5$ th perc $=0.394,97.5$ th perc $=0.681$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1$
$\mathrm{q}=0.0663, \mathrm{lc\mid}=0.0505, \mathrm{ucl}=0.0869$

Results for Management (based on BSM analysis)
Fmsy $=0.299,95 \% C L=0.22-0.405$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.299,95 \% C L=0.22-0.405$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 6.32, 95\% CL = 5.42-7.37
Bmsy $=21.1$, 95\% CL = 16-27.9
Biomass in last year $=23$, 2.5th perc $=16.7,97.5$ perc $=28.8$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=1.09,2.5$ th perc $=0.789,97.5$ perc $=1.36$
Fishing mortality in last year $=0.3,2.5$ th perc $=0.239,97.5$ perc $=0.413$
F/Fmsy $=1,2.5$ th perc $=0.799,97.5$ perc $=1.38$

Stock status and exploitation in 2014
Biomass $=23, \mathrm{~B} / \mathrm{Bmsy}=1.09$, fishing mortality $\mathrm{F}=0.3, \mathrm{~F} / \mathrm{Fmsy}=1$
Comment: OK (RF 27.09.16)

D: Biomass

B: Finding viable r-k

C: Analysis of viable r-k

E: Exploitation rate

Species: Nephrops norvegicus, stock: nep-14
Norway lobster in Division VIIa - FU 14 (Irish Sea, East)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/nep-14.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 2000-2014 , abundance $=$ CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2012 expert
Prior final relative biomass $=0.1$ - 0.4 expert
Prior range for $r=0.2$ - 0.8 default , prior range for $k=1.03-16.4$
Prior range of $q=0.11-0.441$

Results of CMSY analysis with altogether 2571 viable trajectories for 1582 r-k pairs
$r=0.566,95 \% C L=0.407-0.785, k=5.26,95 \% C L=3.06-9.05$
MSY = 0.744, 95\% CL = 0.489-1.13
Relative biomass last year $=0.306 \mathrm{k}, 2.5 \mathrm{th}=0.123,97.5 \mathrm{th}=0.396$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.32$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.498,95 \% C L=0.354-0.7, k=6.03,95 \% C L=4.25-8.54$
MSY $=0.75,95 \% \mathrm{CL}=0.594-0.946$
Relative biomass in last year $=0.402 \mathrm{k}, 2.5$ th perc $=0.266,97.5$ th perc $=0.499$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.18$
$\mathrm{q}=0.206, \mathrm{lcl}=0.155, \mathrm{ucl}=0.272$

Results for Management (based on BSM analysis)
Fmsy $=0.249,95 \% C L=0.177-0.35$ (if $B>1 / 2$ Bmsy then $\mathrm{Fmsy}=0.5 r$)
Fmsy $=0.249,95 \% C L=0.177-0.35$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.75,95 \% C L=0.594-0.946$
Bmsy $=3.01$, 95\% CL $=2.12-4.27$
Biomass in last year $=2.42,2.5$ th perc $=1.6,97.5$ perc $=3.01$
$B /$ Bmsy in last year $=0.804,2.5$ th perc $=0.531,97.5$ perc $=0.998$
Fishing mortality in last year $=0.293,2.5$ th perc $=0.237,97.5$ perc $=0.444$
F/Fmsy $=1.18,2.5$ th perc $=0.95,97.5$ perc $=1.78$

Stock status and exploitation in 2014
Biomass $=2.42, \mathrm{~B} / \mathrm{Bmsy}=0.804$, fishing mortality $\mathrm{F}=0.293, \mathrm{~F} / \mathrm{Fmsy}=1.18$
Comment: OK (RF 27.09.16)

D: Biomass

Year

Catch nep-14

Exploitation

E: Exploitation rate

Year

F: Equilibrium curve

Relative biomass B / k

Species: Nephrops norvegicus, stock: nep-15
Norway lobster in Division VIla - FU 15 (Irish Sea, West)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/nep-15.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1965-2014 , abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2000 expert
Prior final relative biomass $=0.2$ - 0.6 expert
Prior range for $r=0.2$ - 0.8 default , prior range for $k=14.9-238$
Prior range of $q=0.0816-0.326$

Results of CMSY analysis with altogether 5643 viable trajectories for 811 r-k pairs
$r=0.566,95 \% C L=0.407-0.785, k=70.1,95 \% C L=47.2-104$
MSY = 9.91, 95\% CL = 8.67-11.3
Relative biomass last year $=0.395 \mathrm{k}, 2.5 \mathrm{th}=0.211,97.5 \mathrm{th}=0.566$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.39$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.623,95 \% C L=0.398-0.976, \mathrm{k}=67.9,95 \% \mathrm{CL}=48.3-95.5$
MSY = 10.6, 95\% CL = 9-12.4
Relative biomass in last year $=0.499 \mathrm{k}, 2.5$ th perc $=0.354,97.5$ th perc $=0.646$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.949$
$\mathrm{q}=0.132, \mathrm{lcl}=0.101, \mathrm{ucl}=0.172$

Results for Management (based on BSM analysis)
Fmsy $=0.312,95 \% C L=0.199-0.488$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.312,95 \% C L=0.199-0.488$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 10.6, 95\% CL = 9-12.4
Bmsy $=33.9$, 95\% CL $=24.1-47.8$
Biomass in last year $=33.9,2.5$ th perc $=24,97.5$ perc $=43.8$
$B /$ Bmsy in last year $=0.998,2.5$ th perc $=0.708,97.5$ perc $=1.29$
Fishing mortality in last year $=0.296,2.5$ th perc $=0.228,97.5$ perc $=0.416$
F/Fmsy $=0.949,2.5$ th perc $=0.733,97.5$ perc $=1.34$

Stock status and exploitation in 2014
Biomass $=33.9$, $\mathrm{B} / \mathrm{Bmsy}=0.998$, fishing mortality $\mathrm{F}=0.296$, F/Fmsy $=0.949$
Comment: OK (RF 27.09.16)

Species: Nephrops norvegicus , stock: nep-16
Norway lobster in Divisions VIIb, VIIc, VIIj, and VIIk - FU 16 (West and Southwest of Ireland, Porcupine Bank)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/nep-16.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1971-2014 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2000 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=4.7-75.2$
Prior range of $q=0.127-0.51$
Results of CMSY analysis with altogether 1044 viable trajectories for 965 r -k pairs
$r=0.405,95 \% C L=0.272-0.601, k=24.5,95 \% C L=18.3-32.6$
MSY = 2.47, 95\% CL = 2.18-2.81
Relative biomass last year $=0.148 \mathrm{k}, 2.5 \mathrm{th}=0.013,97.5 \mathrm{th}=0.293$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.63$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.397,95 \% \mathrm{CL}=0.273-0.578, \mathrm{k}=24.6,95 \% \mathrm{CL}=17.7-34.2$
MSY = 2.44, 95\% CL = 2.11-2.82
Relative biomass in last year $=0.14 \mathrm{k}, 2.5$ th perc $=0.0844,97.5$ th perc $=0.199$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.74$
$q=0.208, \mathrm{lcl}=0.159, u c l=0.273$
Results for Management (based on BSM analysis)
Fmsy $=0.199,95 \% C L=0.136-0.289$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.111,95 \% C L=0.0763-0.161$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=2.44,95 \% \mathrm{CL}=2.11-2.82$
Bmsy = 12.3, 95\% CL = 8.83-17.1
Biomass in last year $=3.44,2.5$ th perc $=2.08,97.5$ perc $=4.89$
$B /$ Bmsy in last year $=0.279,2.5$ th perc $=0.169,97.5$ perc $=0.398$
Fishing mortality in last year $=0.346,2.5$ th perc $=0.243,97.5$ perc $=0.573$
F/Fmsy $=3.12,2.5$ th perc $=2.19,97.5$ perc $=5.16$
Stock status and exploitation in 2014
Biomass $=3.44, \mathrm{~B} / \mathrm{Bmsy}=0.279$, fishing mortality $\mathrm{F}=0.346$, $\mathrm{F} / \mathrm{Fmsy}=3.12$
Comment: OK (RF 27.09.16)

D: Biomass

E: Exploitation rate

F: Equilibrium curve

Species: Nephrops norvegicus, stock: nep-17
Norway lobster in Division VIIb - FU 17 (West of Ireland, Aran Grounds)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/nep-17.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1988-2014 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= $0.01-0.4$ in year 2006 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.2$ - 0.8 default , prior range for $k=1.48-23.6$
Prior range of $q=0.111-0.444$

Results of CMSY analysis with altogether 1529 viable trajectories for 945 r-k pairs
$r=0.534,95 \% C L=0.363-0.786, k=6.77,95 \% C L=4.49-10.2$
MSY = 0.903, 95\% CL = 0.751-1.09
Relative biomass last year $=0.133 \mathrm{k}, 2.5$ th $=0.0157,97.5$ th $=0.358$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=4.92$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.377,95 \% C L=0.262-0.543, k=8.89,95 \% C L=6.59-12$
MSY $=0.839$, 95% CL $=0.725-0.97$
Relative biomass in last year $=0.188 \mathrm{k}, 2.5$ th perc $=0.132,97.5$ th perc $=0.276$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.53$
$\mathrm{q}=0.224, \mathrm{lcl}=0.178, \mathrm{ucl}=0.283$

Results for Management (based on BSM analysis)
Fmsy $=0.189,95 \% C L=0.131-0.271$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.142,95 \% C L=0.0988-0.205$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=0.839,95 \% C L=0.725-0.97$
Bmsy $=4.45$, 95\% CL $=3.3-6$
Biomass in last year $=1.68,2.5$ th perc $=1.17,97.5$ perc $=2.46$
$B /$ Bmsy in last year $=0.377,2.5$ th perc $=0.264,97.5$ perc $=0.553$
Fishing mortality in last year $=0.478,2.5$ th perc $=0.326,97.5$ perc $=0.681$
F/Fmsy $=3.36,2.5$ th perc $=2.29,97.5$ perc $=4.79$

Stock status and exploitation in 2014
Biomass $=1.68, \mathrm{~B} / \mathrm{Bmsy}=0.377$, fishing mortality $\mathrm{F}=0.478, \mathrm{~F} / \mathrm{Fmsy}=3.36$
Comment: OK (RF 27.09.16)

Species: Nephrops norvegicus, stock: nep-19
Norway lobster in Divisions VIIa, VIIg, and VIIj - FU 19 (Irish Sea, Celtic Sea, Eastern Southwest of Ireland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/nep-19.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1989-2014, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.5-0.9 in year 2003 default
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.2-0.8$ default, prior range for $k=1.51-24.2$
Prior range of $q=0.169-0.677$

Results of CMSY analysis with altogether 2523 viable trajectories for 1223 r-k pairs
$r=0.566,95 \% C L=0.407-0.785, k=5.78,95 \% C L=3.96-8.44$
MSY $=0.818,95 \%$ CL $=0.741-0.903$
Relative biomass last year $=0.307 \mathrm{k}, 2.5 \mathrm{th}=0.0336,97.5$ th $=0.396$
Exploitation $F /(r / 2)$ in last year $=1.34$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.52,95 \% C L=0.36-0.752, k=6.42,95 \% C L=4.59-8.96$
MSY = 0.834, 95\% CL = 0.743-0.936
Relative biomass in last year $=0.301 \mathrm{k}, 2.5$ th perc $=0.199,97.5$ th perc $=0.434$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.933$
$\mathrm{q}=0.306, \mathrm{lc\mid}=0.228, \mathrm{ucl}=0.41$

Results for Management (based on BSM analysis)
Fmsy $=0.26,95 \% C L=0.18-0.376$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.26,95 \% C L=0.18-0.376$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=0.834,95 \% C L=0.743-0.936$
Bmsy $=3.21,95 \% C L=2.3-4.48$
Biomass in last year $=1.93,2.5$ th perc $=1.27,97.5$ perc $=2.79$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.601,2.5$ th perc $=0.397,97.5$ perc $=0.868$
Fishing mortality in last year $=0.243,2.5$ th perc $=0.168,97.5$ perc $=0.367$
F/Fmsy $=0.933,2.5$ th perc $=0.646,97.5$ perc $=1.41$

Stock status and exploitation in 2014
Biomass $=1.93, \mathrm{~B} / \mathrm{Bmsy}=0.601$, fishing mortality $\mathrm{F}=0.243, \mathrm{~F} / \mathrm{Fmsy}=0.933$
Comment: OK (RF 27.09.16)

D: Biomass

Species: Nephrops norvegicus, stock: nep-2021
Norway lobster in Divisions VIIg and VIIh - FUs 20 and 21 (Celtic Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/nep-2021.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1995-2014 , abundance $=$ CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= $0.01-0.4$ in year 1999 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.2$ - 0.8 default , prior range for $k=4.42-70.7$
Prior range of $q=0.268-1.07$

Results of CMSY analysis with altogether 2104 viable trajectories for 1269 r-k pairs
$r=0.533,95 \% C L=0.361-0.786, k=18.5,95 \% C L=11.9-28.7$
MSY = 2.46, 95\% CL = 1.9-3.18
Relative biomass last year $=0.274 \mathrm{k}, 2.5 \mathrm{th}=0.0245,97.5$ th $=0.395$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.09$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.529,95 \% C L=0.333-0.839, k=18.2,95 \% C L=11.9-27.7$
MSY = 2.4, 95\% CL = 2.02-2.85
Relative biomass in last year $=0.242 \mathrm{k}, 2.5$ th perc $=0.121,97.5$ th perc $=0.392$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.58$
$\mathrm{q}=0.452, \mathrm{lc\mid}=0.33, \mathrm{ucl}=0.619$

Results for Management (based on BSM analysis)
Fmsy $=0.264,95 \% C L=0.167-0.419$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.256,95 \% C L=0.161-0.406$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 2.4, 95\% CL = 2.02-2.85
Bmsy $=9.09$, 95\% CL $=5.96-13.9$
Biomass in last year $=4.4,2.5$ th perc $=2.21,97.5$ perc $=7.13$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.484,2.5$ th perc $=0.243,97.5$ perc $=0.784$
Fishing mortality in last year $=0.418,2.5$ th perc $=0.258,97.5$ perc $=0.832$
F/Fmsy $=1.63,2.5$ th $\operatorname{perc}=1.01,97.5$ perc $=3.25$

Stock status and exploitation in 2014
Biomass $=4.4, \mathrm{~B} / \mathrm{Bmsy}=0.484$, fishing mortality $\mathrm{F}=0.418, \mathrm{~F} / \mathrm{Fmsy}=1.63$
Comment: OK (RF 27.09.16)

D: Biomass

Catch nep-202

Exploitation

E: Exploitation rate

F: Equilibrium curve

Species: Nephrops norvegicus, stock: nep-22
Norway lobster in Divisions VIIg and VIIf - FU 22 (Celtic Sea, Bristol Channel)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/nep-22.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1999-2014 , abundance $=$ CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.1-0.5 in year 2009 expert
Prior final relative biomass $=0.3-0.7$ expert
Prior range for $r=0.2$ - 0.8 default , prior range for $k=3.43-54.9$
Prior range of $q=0.0533-0.213$

Results of CMSY analysis with altogether 5873 viable trajectories for 2412 r-k pairs
$r=0.566,95 \% C L=0.407-0.785, k=19.7,95 \% C L=11.4-34.2$
MSY = 2.79, 95\% CL = 1.8-4.32
Relative biomass last year $=0.434 \mathrm{k}, 2.5 \mathrm{th}=0.309,97.5 \mathrm{th}=0.663$
Exploitation $F /(r / 2)$ in last year $=1.03$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.478,95 \% C L=0.324-0.707, k=22.2,95 \% C L=15.7-31.4$
$\mathrm{MSY}=2.66,95 \% \mathrm{CL}=2.2-3.22$
Relative biomass in last year $=0.607 \mathrm{k}, 2.5$ th perc $=0.421,97.5$ th perc $=0.771$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.81$
$q=0.109, \mathrm{lcl}=0.0824, \mathrm{ucl}=0.146$

Results for Management (based on BSM analysis)
Fmsy $=0.239,95 \% C L=0.162-0.353$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.239,95 \% C L=0.162-0.353$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 2.66, 95\% CL = 2.2-3.22
Bmsy $=11.1$, 95\% CL $=7.87-15.7$
Biomass in last year $=13.5,2.5$ th perc $=9.36,97.5$ perc $=17.1$
$B /$ Bmsy in last year $=1.21,2.5$ th perc $=0.842,97.5$ perc $=1.54$
Fishing mortality in last year $=0.194,2.5$ th perc $=0.152,97.5$ perc $=0.279$
F/Fmsy $=0.81,2.5$ th perc $=0.638,97.5$ perc $=1.17$

Stock status and exploitation in 2014
Biomass $=13.5$, $\mathrm{B} / \mathrm{Bmsy}=1.21$, fishing mortality $\mathrm{F}=0.194$, $\mathrm{F} / \mathrm{Fmsy}=0.81$
Comment: OK (RF 27.09.16)

D: Biomass

C: Analysis of viable r-k

F: Equilibrium curve

Species: Nephrops norvegicus, stock: nep-oth-6a
Norway lobster in DivisionVla, outside the functional units (West of Scotland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/nep-oth-6a.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1990-2014 , abundance $=$ None
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 1998 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=0.533-8.53$

Results of CMSY analysis with altogether 2565 viable trajectories for 1800 r-k pairs
$r=0.553,95 \% C L=0.389-0.785, k=2.62,95 \% C L=1.7-4.03$
MSY $=0.362,95 \% C L=0.292-0.449$
Relative biomass last year $=0.294 \mathrm{k}, 2.5 \mathrm{th}=0.0358,97.5$ th $=0.394$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.43$

Results for Management (based on CMSY analysis)
Fmsy $=0.276,95 \% C L=0.195-0.393$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.276,95 \% C L=0.195-0.393$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.362,95 \% C L=0.292-0.449$
Bmsy $=1.31$, 95\% CL $=0.852-2.02$
Biomass in last year $=0.77,2.5$ th perc $=0.0939,97.5$ perc $=1.03$
B/Bmsy in last year $=0.588,2.5$ th perc $=0.0716,97.5$ perc $=0.788$
Fishing mortality in last year $=0.318,2.5$ th perc $=0.237,97.5$ perc $=2.61$
F/Fmsy $=1.15,2.5$ th perc $=0.858,97.5$ perc $=9.44$

Stock status and exploitation in 2014
Biomass $=0.77, \mathrm{~B} / \mathrm{Bmsy}=0.588$, fishing mortality $\mathrm{F}=0.318$, $\mathrm{F} / \mathrm{Fmsy}=1.15$
Comment: OK (RF 27.09.16)

D: Biomass

Catch nep-oth-6a

Exploitation

Species: Nephrops norvegicus, stock: nep-oth-7
Norway lobster in Subarea VII - Functional Unit 18 and rectangles outside the functional units (Southern Celtic Seas, Southwest of Ireland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/nep-oth-7.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1995-2014 , abundance $=$ None
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass= 0.01 - 0.4 in year 2004 default
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=0.682-10.9$

Results of CMSY analysis with altogether 1749 viable trajectories for 1384 r-k pairs
$r=0.458,95 \% C L=0.298-0.706, k=3.7,95 \% C L=2.03-6.75$
MSY $=0.424,95 \% C L=0.218-0.825$
Relative biomass last year $=0.202 \mathrm{k}, 2.5$ th $=0.0177,97.5$ th $=0.296$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.42$

Results for Management (based on CMSY analysis)
Fmsy $=0.229,95 \% C L=0.149-0.353$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.185,95 \% C L=0.12-0.284$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.424,95 \% C L=0.218-0.825$
Bmsy $=1.85$, 95\% CL $=1.02-3.38$
Biomass in last year $=0.746,2.5$ th perc $=0.0656,97.5$ perc $=1.1$
$B /$ Bmsy in last year $=0.403,2.5$ th perc $=0.0354,97.5$ perc $=0.593$
Fishing mortality in last year $=0.233,2.5$ th perc $=0.159,97.5$ perc $=2.65$
F/Fmsy $=1.26,2.5$ th perc $=0.858,97.5$ perc $=14.4$

Stock status and exploitation in 2014
Biomass $=0.746, B / B m s y=0.403$, fishing mortality $F=0.233, F / F m s y=1.26$
Comment: OK (RF 27.09.16)

B: Finding viable $r-k$

Year

E: Exploitation rate

Year

C: Analysis of viable r-k

F: Equilibrium curve

Catch nep-oth-7

Exploitation

Species: Pleuronectes platessa, stock: ple-7b-c
Plaice in Divisions VIIb,c (West of Ireland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/ple-7b-c.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1965-2014 , abundance $=$ None
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 1972 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.2-0.77$ expert, , prior range for $k=0.673-10.4$

Results of CMSY analysis with altogether 1095 viable trajectories for 972 r-k pairs
$r=0.346,95 \% C L=0.275-0.434, k=2.27,95 \% C L=1.78-2.9$
MSY $=0.196,95 \%$ CL $=0.172-0.224$
Relative biomass last year $=0.107 \mathrm{k}, 2.5 \mathrm{th}=0.0186,97.5$ th $=0.285$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.555$

Results for Management (based on CMSY analysis)
Fmsy $=0.173,95 \% C L=0.138-0.217$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.074,95 \% C L=0.0589-0.093$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 0.196, 95\% CL = 0.172-0.224
Bmsy $=1.14,95 \% \mathrm{CL}=0.889-1.45$
Biomass in last year $=0.243,2.5$ th perc $=0.0423,97.5$ perc $=0.647$
$B /$ Bmsy in last year $=0.214,2.5$ th perc $=0.0372,97.5$ perc $=0.57$
Fishing mortality in last year $=0.0945,2.5$ th perc $=0.0355,97.5$ perc $=0.544$
F/Fmsy $=1.28,2.5$ th perc $=0.48,97.5$ perc $=7.34$

Stock status and exploitation in 2014
Biomass $=0.243, \mathrm{~B} / \mathrm{Bmsy}=0.214$, fishing mortality $\mathrm{F}=0.0945, \mathrm{~F} / \mathrm{Fmsy}=1.28$
Comment: OK (RF 27.09.16)

E: Exploitation rate

Year

Species: Pleuronectes platessa, stock: ple-7h-k
Plaice in Divisions VIIh-k (Celtic Sea South, Southwest of Ireland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/ple-7h-k.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1993-2015 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2003 expert
Prior final relative biomass $=0.01-0.2$ expert
Prior range for $r=0.2-0.77$ expert, , prior range for $k=0.568-8.74$
Prior range of $q=0.00123-0.00484$
Results of CMSY analysis with altogether 2149 viable trajectories for 1985 r-k pairs
$r=0.462,95 \% \mathrm{CL}=0.311-0.685, \mathrm{k}=3.62,95 \% \mathrm{CL}=1.9-6.88$
MSY $=0.418,95 \%$ CL $=0.199-0.878$
Relative biomass last year $=0.0875 \mathrm{k}, 2.5$ th $=0.0122,97.5$ th $=0.193$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.833$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.468,95 \% \mathrm{CL}=0.311-0.703, \mathrm{k}=2.46,95 \% \mathrm{CL}=1.66-3.66$
MSY = 0.288, 95\% CL $=0.188-0.441$
Relative biomass in last year $=0.0538 \mathrm{k}$, 2.5th perc $=0.0365,97.5$ th perc $=0.0775$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.06$
$\mathrm{q}=0.00186, \mathrm{lc\mid}=0.00147, \mathrm{ucl}=0.00235$
Results for Management (based on BSM analysis)
Fmsy $=0.234,95 \% C L=0.156-0.351$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0503,95 \% C L=0.0335-0.0756$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.288,95 \%$ CL $=0.188-0.441$
Bmsy $=1.23,95 \% \mathrm{CL}=0.83-1.83$
Biomass in last year $=0.133,2.5$ th perc $=0.0899,97.5$ perc $=0.191$
$\mathrm{B} /$ Bmsy in last year $=0.108,2.5$ th perc $=0.0729,97.5$ perc $=0.155$
Fishing mortality in last year $=0.249,2.5$ th perc $=0.173,97.5$ perc $=0.367$
F/Fmsy $=4.95,2.5$ th perc $=3.44,97.5$ perc $=7.3$
Stock status and exploitation in 2014
Biomass $=0.244, \mathrm{~B} / \mathrm{Bmsy}=0.198$, fishing mortality $\mathrm{F}=0.349, \mathrm{~F} / \mathrm{Fmsy}=3.77$
Comment: OK (RF 27.09.16)

D: Biomass

Catch ple-7h-k

Exploitation

E: Exploitation rate

Year

F: Equilibrium curve

Species: Pleuronectes platessa, stock: ple-celt Plaice in Divisions VIIf,g (Celtic Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/ple-celt.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1995-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2006 default
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.2-0.77$ expert, , prior range for $k=2.82-65$
Prior range of $q=0.00032-0.00126$

Results of CMSY analysis with altogether 2993 viable trajectories for 2497 r-k pairs
$r=0.541,95 \% C L=0.391-0.747, k=14.2,95 \% C L=5.02-40.2$
MSY = 1.92, 95\% CL = 0.462-7.98
Relative biomass last year $=0.825 \mathrm{k}, 2.5 \mathrm{th}=0.537,97.5 \mathrm{th}=0.895$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.127$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.721,95 \% C L=0.502-1.03, k=8.83,95 \% C L=5.67-13.7$
MSY = 1.59, 95\% CL = 0.974-2.6
Relative biomass in last year $=0.911 \mathrm{k}, 2.5$ th perc $=0.779,97.5$ th perc $=0.991$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.132$
$q=0.000416, \mathrm{lcl}=0.000307, u c l=0.000563$

Results for Management (based on BSM analysis)
Fmsy $=0.36,95 \% C L=0.251-0.517$ (if $B>1 / 2$ Bmsy then $\mathrm{Fmsy}=0.5 r$)
Fmsy $=0.36,95 \% C L=0.251-0.517$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 1.59, 95\% CL = 0.974-2.6
Bmsy $=4.41$, 95\% CL $=2.83-6.87$
Biomass in last year $=8.04,2.5$ th perc $=6.87,97.5$ perc $=8.75$
B/Bmsy in last year $=1.82,2.5$ th perc $=1.56,97.5$ perc $=1.98$
Fishing mortality in last year $=0.0474,2.5$ th perc $=0.0435,97.5$ perc $=0.0554$
F/Fmsy $=0.132,2.5$ th perc $=0.121,97.5$ perc $=0.154$

Stock status and exploitation in 2014
Biomass $=7.94, \mathrm{~B} / \mathrm{Bmsy}=1.8$, fishing mortality $\mathrm{F}=0.0516, \mathrm{~F} / \mathrm{Fmsy}=0.143$
Comment: OK (RF 27.09.16)

E: Exploitation rate

Species: Pleuronectes platessa, stock: ple-echw
Plaice in Division VIIe (Western Channel)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/ple-echw.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1980-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2008 default
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.2-0.77$ expert, , prior range for $k=7.41-171$
Prior range of $q=5.36 \mathrm{e}-05-0.00021$
Results of CMSY analysis with altogether 1745 viable trajectories for 1493 r -k pairs
$r=0.517,95 \%$ CL $=0.371-0.72, k=14.4,95 \% C L=10-20.7$
MSY = 1.86, 95\% CL = 1.64-2.1
Relative biomass last year $=0.582 \mathrm{k}, 2.5 \mathrm{th}=0.506,97.5 \mathrm{th}=0.704$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=0.677$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.346,95 \% \mathrm{CL}=0.255-0.471, \mathrm{k}=23.4,95 \% \mathrm{CL}=16.4-33.5$
MSY = 2.03, 95\% CL = 1.61-2.56
Relative biomass in last year $=0.796 \mathrm{k}$, 2.5th perc $=0.597,97.5$ th perc $=0.966$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.44$
$q=0.000107, \mathrm{lcl}=7.97 \mathrm{e}-05, \mathrm{ucl}=0.000145$
Results for Management (based on BSM analysis)
Fmsy $=0.173,95 \% C L=0.127-0.235$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.173,95 \% C L=0.127-0.235$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 2.03, 95\% CL = 1.61-2.56
Bmsy =11.7, 95\% CL = 8.2-16.7
Biomass in last year $=18.7$, 2.5th perc $=14,97.5$ perc $=22.6$
$B /$ Bmsy in last year $=1.59,2.5$ th perc $=1.19,97.5$ perc $=1.93$
Fishing mortality in last year $=0.0763,2.5$ th perc $=0.0629,97.5$ perc $=0.102$
F/Fmsy $=0.44,2.5$ th perc $=0.363,97.5$ perc $=0.588$
Stock status and exploitation in 2014
Biomass $=16, \mathrm{~B} / \mathrm{Bmsy}=1.37$, fishing mortality $\mathrm{F}=0.0931$, $\mathrm{F} / \mathrm{Fmsy}=0.537$
Comment: OK (RF 27.09.16)

D: Biomass

Catch ple-echw

Exploitation

Species: Pleuronectes platessa, stock: ple-iris Plaice in Divisionn VIIa (Irish Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/ple-iris.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1993-2015 , abundance $=$ CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2005 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.2-0.77$ expert, , prior range for $k=6.26-145$
Prior range of $q=5.63 e-05-0.000221$

Results of CMSY analysis with altogether 5878 viable trajectories for 2735 r-k pairs
$r=0.549,95 \% C L=0.399-0.754, k=17.6,95 \% C L=10-31$
MSY = 2.42, 95\% CL = 1.49-3.92
Relative biomass last year $=0.648 \mathrm{k}, 2.5 \mathrm{th}=0.507,97.5$ th $=0.851$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.371$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.529,95 \% C L=0.407-0.687, k=20,95 \% C L=14.9-26.8$
MSY = 2.65, 95\% CL = 2.31-3.03
Relative biomass in last year $=0.89 \mathrm{k}, 2.5$ th perc $=0.757,97.5$ th perc $=0.992$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.213$
$\mathrm{q}=9.33 \mathrm{e}-05, \mathrm{lc\mid}=7.15 \mathrm{e}-05, \mathrm{ucl}=0.000122$

Results for Management (based on BSM analysis)
Fmsy $=0.264,95 \% C L=0.204-0.344$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.264,95 \% C L=0.204-0.344$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 2.65, 95\% CL = 2.31-3.03
Bmsy = 10, 95\% CL = 7.47-13.4
Biomass in last year $=17.8,2.5$ th perc $=15.2,97.5$ perc $=19.9$
$B /$ Bmsy in last year $=1.78,2.5$ th perc $=1.51,97.5$ perc $=1.98$
Fishing mortality in last year $=0.0564,2.5$ th perc $=0.0506,97.5$ perc $=0.0662$
F/Fmsy $=0.213,2.5$ th perc $=0.191,97.5$ perc $=0.25$

Stock status and exploitation in 2014
Biomass $=15.4, \mathrm{~B} / \mathrm{Bmsy}=1.54$, fishing mortality $\mathrm{F}=0.0952$, $\mathrm{F} / \mathrm{Fmsy}=0.36$
Comment: OK (RF 27.09.16)

D: Biomass

Catch ple-iris

E: Exploitation rate

Year

F: Equilibrium curve

Species: Pollachius pollachius , stock: pol-celt
Pollack in Subareas VI-VII (Celtic Seas and the English Channel)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/pol-celt.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1986-2014 , abundance = None
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2005 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.5-1$ expert, , prior range for $k=10.7-85.9$
Results of CMSY analysis with altogether 112 viable trajectories for 111 r -k pairs
$r=0.633,95 \% \mathrm{CL}=0.531-0.754, \mathrm{k}=46.1,95 \% \mathrm{CL}=37.7-56.3$
MSY = 7.29, 95\% CL = 5.86-9.08
Relative biomass last year $=0.312 \mathrm{k}, 2.5 \mathrm{th}=0.0369,97.5 \mathrm{th}=0.396$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.08$

Results for Management (based on CMSY analysis)
Fmsy $=0.316,95 \% C L=0.266-0.377$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.316,95 \% C L=0.266-0.377$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 7.29, 95\% CL = 5.86-9.08
Bmsy $=23.1,95 \%$ CL $=18.9-28.2$
Biomass in last year $=14.4,2.5$ th perc $=1.7,97.5$ perc $=18.3$
$\mathrm{B} /$ Bmsy in last year $=0.623,2.5$ th perc $=0.0739,97.5$ perc $=0.792$
Fishing mortality in last year $=0.366,2.5$ th perc $=0.288,97.5$ perc $=3.09$
F/Fmsy $=1.16,2.5$ th perc $=0.91,97.5$ perc $=9.75$
Stock status and exploitation in 2014
Biomass $=14.4, \mathrm{~B} / \mathrm{Bmsy}=0.623$, fishing mortality $\mathrm{F}=0.366, \mathrm{~F} / \mathrm{Fmsy}=1.16$
Comment: OK (RF 27.09.16)

B: Finding viable r-k
C: Analysis of viable r-k

D: Biomass

Species: Coryphaenoides rupestris, stock: rng-5b67
Roundnose grenadier in in Divisions Xb and XIIc, and Subdivisions XIIa1, XIVb1, and Va1 (Oceanic Northeast Atlantic and Northern Reykjanes Ridge)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/rng-5b67.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1988-2015, abundance = CPUE
Prior initial relative biomass $=0.7-0.99$ expert
Prior intermediate rel. biomass= 0.3-0.7 in year 2000 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.11-0.71$ expert, , prior range for $k=20.4-526$
Prior range of $q=1.97 e-05-9.99 e-05$

Results of CMSY analysis with altogether 2446 viable trajectories for 511 r-k pairs
$r=0.423,95 \% C L=0.27-0.662, k=72.9,95 \% C L=43.6-122$
MSY = 7.71, 95\% CL = 6.52-9.12
Relative biomass last year $=0.175 \mathrm{k}, 2.5 \mathrm{th}=0.0168,97.5$ th $=0.387$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.415$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.242,95 \% C L=0.177-0.33, k=113,95 \% C L=92-140$
MSY = 6.87, 95\% CL = 5.72-8.24
Relative biomass in last year $=0.275 \mathrm{k}, 2.5$ th perc $=0.241,97.5$ th perc $=0.307$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.186$
$q=1.91 \mathrm{e}-05, \mathrm{lc\mid}=1.55 \mathrm{e}-05, \mathrm{ucl}=2.35 \mathrm{e}-05$

Results for Management (based on BSM analysis)
Fmsy $=0.121,95 \% C L=0.0887-0.165$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.121,95 \% C L=0.0887-0.165$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=6.87,95 \% C L=5.72-8.24$
Bmsy $=56.7$, 95\% CL $=46-69.9$
Biomass in last year $=31.2,2.5$ th perc $=27.3,97.5$ perc $=34.8$
$B /$ Bmsy in last year $=0.55,2.5$ th perc $=0.482,97.5$ perc $=0.613$
Fishing mortality in last year $=0.0225,2.5$ th perc $=0.0201,97.5$ perc $=0.0256$
F/Fmsy $=0.186,2.5$ th perc $=0.166,97.5$ perc $=0.212$

Stock status and exploitation in 2014
Biomass $=28.5, \mathrm{~B} / \mathrm{Bmsy}=0.502$, fishing mortality $\mathrm{F}=0.0403, \mathrm{~F} / \mathrm{Fmsy}=0.333$
Comment: OK (RF 27.09.16)

D: Biomass

Year

E: Exploitation rate

Year

F: Equilibrium curve

Relative biomass B / k

Species: Pagellus bogaraveo , stock: sbr-678
Red (= blackspot) seabream in subareas 6, 7, and 8 (Celtic Seas and the English Channel, Bay of Biscay)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sbr-678.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1988-2015, abundance = None
Prior initial relative biomass $=0.01-0.3$ expert
Prior intermediate rel. biomass=0.01-0.2 in year 1996 expert
Prior final relative biomass $=0.01-0.2$ expert
Prior range for $\mathrm{r}=0.26-0.76$ expert, , prior range for $\mathrm{k}=0.568-6.65$
Results of CMSY analysis with altogether 328 viable trajectories for 323 r-k pairs
$r=0.449,95 \% C L=0.301-0.671, k=4.88,95 \% C L=3.25-7.33$
MSY $=0.548,95 \% \mathrm{CL}=0.357-0.843$
Relative biomass last year $=0.0862 \mathrm{k}, 2.5$ th $=0.0176,97.5$ th $=0.196$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.57$

Results for Management (based on CMSY analysis)
Fmsy $=0.225,95 \% C L=0.15-0.336$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0774,95 \% C L=0.0518-0.116$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=0.548,95 \% \mathrm{CL}=0.357-0.843$
Bmsy $=2.44,95 \% \mathrm{CL}=1.63-3.66$
Biomass in last year $=0.421,2.5$ th perc $=0.0862,97.5$ perc $=0.958$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.172,2.5$ th perc $=0.0353,97.5$ perc $=0.393$
Fishing mortality in last year $=0.421,2.5$ th perc $=0.185,97.5$ perc $=2.05$
F/Fmsy $=5.43,2.5$ th perc $=2.38,97.5$ perc $=26.5$
Stock status and exploitation in 2014
Biomass $=0.576, \mathrm{~B} / \mathrm{Bmsy}=0.236$, fishing mortality $\mathrm{F}=0.445, \mathrm{~F} / \mathrm{Fmsy}=4.2$
Comment: OK (RF 27.09.16)

D: Biomass

Year

Catch sbr-678

F: Equilibrium curve

Year
Relative biomass B / k

Biomass

Exploitation

Species: Solea solea, stock: sol-7b-c
Sole (Solea solea) in Divisions VIIb,c (West of Ireland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/sol-7b-c.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1970-2014, abundance = None
Prior initial relative biomass $=0.01-0.3$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $\mathrm{r}=0.21-1$ expert, , prior range for $\mathrm{k}=0.067-1.3$
Results of CMSY analysis with altogether 592 viable trajectories for 591 r -k pairs
$r=0.325,95 \% C L=0.234-0.45, k=0.698,95 \% C L=0.554-0.88$
MSY $=0.0566,95 \% \mathrm{CL}=0.0476-0.0674$
Relative biomass last year $=0.245 \mathrm{k}, 2.5 \mathrm{th}=0.0187,97.5 \mathrm{th}=0.386$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.25$

Results for Management (based on CMSY analysis)
Fmsy $=0.162,95 \% C L=0.117-0.225$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.159,95 \% C L=0.115-0.221$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=0.0566,95 \%$ CL $=0.0476-0.0674$
Bmsy $=0.349$, 95% CL $=0.277-0.44$
Biomass in last year $=0.171,2.5$ th perc $=0.0131,97.5$ perc $=0.269$
$\mathrm{B} /$ Bmsy in last year $=0.49,2.5$ th perc $=0.0374,97.5 \mathrm{perc}=0.772$
Fishing mortality in last year $=0.152,2.5$ th perc $=0.0965,97.5$ perc $=1.99$
F/Fmsy $=0.954,2.5$ th perc $=0.606,97.5$ perc $=12.5$

Stock status and exploitation in 2014
Biomass $=0.171, \mathrm{~B} / \mathrm{Bmsy}=0.49$, fishing mortality $\mathrm{F}=0.152, \mathrm{~F} / \mathrm{Fmsy}=0.954$
Comment: OK (RF 27.09.16)

B: Finding viable r-k

C: Analysis of viable r-k

D: Biomass

E: Exploitation rate

F: Equilibrium curve

Species: Solea solea, stock: sol-7h-k
Sole in Divisions VIIh-k (Celtic Sea South, Southwest of Ireland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sol-7h-k.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1993-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 2009 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.21-1$ expert, , prior range for $k=0.811-15.8$
Prior range of $q=0.000651-0.00287$

Results of CMSY analysis with altogether 3420 viable trajectories for 2471 r-k pairs
$r=0.512,95 \% C L=0.31-0.844, k=6.04,95 \% C L=3.22-11.3$
$\mathrm{MSY}=0.773,95 \% \mathrm{CL}=0.394-1.52$
Relative biomass last year $=0.504 \mathrm{k}, 2.5 \mathrm{th}=0.222,97.5 \mathrm{th}=0.597$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.297$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.497,95 \% C L=0.363-0.68, k=4.42,95 \% C L=3.21-6.09$
MSY $=0.548,95 \%$ CL $=0.438-0.686$
Relative biomass in last year $=0.405 \mathrm{k}, 2.5$ th perc $=0.311,97.5$ th perc $=0.516$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.55$
$q=0.000677, \mathrm{lcl}=0.000521, u c l=0.000878$

Results for Management (based on BSM analysis)
Fmsy $=0.248,95 \% C L=0.181-0.34$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.248,95 \% C L=0.181-0.34$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.548,95 \% C L=0.438-0.686$
Bmsy $=2.21$, 95\% CL $=1.6-3.04$
Biomass in last year $=1.79,2.5$ th perc $=1.38,97.5$ perc $=2.28$
$B /$ Bmsy in last year $=0.809,2.5$ th perc $=0.623,97.5$ perc $=1.03$
Fishing mortality in last year $=0.136,2.5$ th perc $=0.107,97.5$ perc $=0.177$
F/Fmsy $=0.55,2.5$ th perc $=0.431,97.5$ perc $=0.714$

Stock status and exploitation in 2014
Biomass $=1.7, B / B m s y=0.769$, fishing mortality $F=0.141$, $F / F m s y=0.566$
Comment: OK (RF 27.09.16)

D: Biomass

E: Exploitation rate

Year

F: Equilibrium curve

Biomass

Species: Solea solea, stock: sol-celt
Sole in Divisions VIIf, g (Celtic Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sol-celt.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1971-2015, abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 1998 expert
Prior final relative biomass $=0.3-0.7$ expert
Prior range for $r=0.21$ - 1 expert, , prior range for $k=1.82-35.4$
Prior range of $q=0.303-1.34$

Results of CMSY analysis with altogether 1010 viable trajectories for 935 r-k pairs
$r=0.684,95 \% C L=0.472-0.991, k=7.08,95 \% C L=4.7-10.7$
MSY = 1.21, 95\% CL = 1.12-1.31
Relative biomass last year $=0.474 \mathrm{k}, 2.5 \mathrm{th}=0.311,97.5 \mathrm{th}=0.681$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.41$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.448,95 \% C L=0.319-0.629, k=10.2,95 \% C L=7.45-14.1$
MSY = 1.15, 95\% CL = 1.05-1.25
Relative biomass in last year $=0.32 \mathrm{k}, 2.5$ th perc $=0.249$, 97.5 th perc $=0.503$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=3.7$
$\mathrm{q}=0.578, \mathrm{lcl}=0.429, \mathrm{ucl}=0.779$

Results for Management (based on BSM analysis)
Fmsy $=0.224,95 \% C L=0.16-0.315$ (if $B>1 / 2$ Bmsy then $\mathrm{Fmsy}=0.5 r$)
Fmsy $=0.224,95 \% C L=0.16-0.315$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 1.15, 95\% CL = 1.05-1.25
Bmsy $=5.12$, 95\% CL $=3.73-7.03$
Biomass in last year $=3.27,2.5$ th perc $=2.54,97.5$ perc $=5.15$
$B /$ Bmsy in last year $=0.64,2.5$ th perc $=0.497,97.5$ perc $=1.01$
Fishing mortality in last year $=0.829,2.5$ th perc $=0.527,97.5$ perc $=1.07$
F/Fmsy $=3.7,2.5$ th perc $=2.35,97.5$ perc $=4.76$

Stock status and exploitation in 2014
Biomass $=3.39$, $\mathrm{B} / \mathrm{Bmsy}=0.662$, fishing mortality $\mathrm{F}=0.308, \mathrm{~F} / \mathrm{Fmsy}=1.37$
Comment: OK (RF 27.09.16) r updated

D: Biomass

F: Equilibrium curve

Catch sol-celt

Exploitation

Species: Solea solea, stock: sol-echw
Sole in Division VIIe (Western Channel)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sol-echw.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1969-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.2-0.6 in year 1990 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.21$ - 1 expert, , prior range for $k=1.41-27.4$
Prior range of $q=0.723-3.19$

Results of CMSY analysis with altogether 3879 viable trajectories for 1065 r-k pairs
$r=0.563,95 \% C L=0.391-0.81, k=7.71,95 \% C L=5.44-10.9$
MSY = 1.08, 95\% CL = 1-1.17
Relative biomass last year $=0.524 \mathrm{k}, 2.5 \mathrm{th}=0.253,97.5 \mathrm{th}=0.598$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.745$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.41,95 \% C L=0.314-0.537, k=9.87,95 \% C L=7.46-13.1$
MSY = 1.01, 95\% CL = 0.912-1.12
Relative biomass in last year $=0.544 \mathrm{k}, 2.5$ th perc $=0.416,97.5$ th perc $=0.652$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.701$
$\mathrm{q}=0.764, \mathrm{lcl}=0.594, \mathrm{ucl}=0.982$

Results for Management (based on BSM analysis)
Fmsy $=0.205,95 \% C L=0.157-0.268$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.205,95 \% C L=0.157-0.268$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 1.01, 95\% CL = 0.912-1.12
Bmsy $=4.93$, 95\% CL $=3.73-6.53$
Biomass in last year $=5.37,2.5$ th perc $=4.11,97.5$ perc $=6.44$
$B /$ Bmsy in last year $=1.09,2.5$ th perc $=0.833,97.5$ perc $=1.3$
Fishing mortality in last year $=0.144,2.5$ th perc $=0.12,97.5$ perc $=0.188$
F/Fmsy $=0.701,2.5$ th perc $=0.585,97.5$ perc $=0.916$

Stock status and exploitation in 2014
Biomass $=5.53, B / B m s y=1.12$, fishing mortality $F=0.16, F / F m s y=0.78$
Comment: OK (RF 27.09.16)

Species: Solea solea, stock: sol-iris
Sole in Division VIIa (Irish Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sol-iris.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1970-2015, abundance $=$ CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.01-0.2$ expert
Prior range for $r=0.21-1$ expert, , prior range for $k=5.63-109$
Prior range of $q=0.672-2.96$

Results of CMSY analysis with altogether 258 viable trajectories for 250 r-k pairs
$r=0.345,95 \% C L=0.197-0.602, k=44.2,95 \% C L=25.1-77.8$
MSY = 3.81, 95\% CL = $1.75-8.3$
Relative biomass last year $=0.0712 \mathrm{k}, 2.5$ th $=0.0115,97.5$ th $=0.192$
Exploitation $F /(r / 2)$ in last year $=0.198$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.52,95 \% C L=0.361-0.75, k=24.2,95 \% C L=16.6-35.2$
MSY = 3.15, 95\% CL = 2.51-3.93
Relative biomass in last year $=0.0691 \mathrm{k}, 2.5$ th perc $=0.0183,97.5$ th perc $=0.207$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.175$
$q=0.79, \mathrm{lcl}=0.578, \mathrm{ucl}=1.08$

Results for Management (based on BSM analysis)
Fmsy $=0.26,95 \% C L=0.181-0.375$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0719,95 \% C L=0.0499-0.104$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 3.15, 95\% CL = 2.51-3.93
Bmsy = 12.1, 95\% CL = 8.3-17.6
Biomass in last year $=1.67,2.5$ th perc $=0.443,97.5$ perc $=5$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.138,2.5$ th perc $=0.0367,97.5$ perc $=0.414$
Fishing mortality in last year $=0.0455,2.5$ th perc $=0.0152,97.5$ perc $=0.171$
F/Fmsy $=0.633,2.5$ th perc $=0.211,97.5$ perc $=2.39$

Stock status and exploitation in 2014
Biomass $=1.64, \mathrm{~B} / \mathrm{Bmsy}=0.135$, fishing mortality $\mathrm{F}=0.0605, \mathrm{~F} / \mathrm{Fmsy}=0.861$
Comment: OK (RF 27.09.16)

D: Biomass

E: Exploitation rate

F: Equilibrium curve

Species: Sprattus sprattus , stock: spr-celt
Sprat in in Subarea VI and Divisions VIIa-c and f-k (West of Scotland, Southern Celtic Seas)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/spr-celt.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1985-2014 , abundance = None
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2006 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $\mathrm{r}=0.21$ - 1.1 expert, , prior range for $\mathrm{k}=9.08-192$
Results of CMSY analysis with altogether 3020 viable trajectories for 1342 r -k pairs
$r=0.691,95 \% \mathrm{CL}=0.463-1.03, \mathrm{k}=33.5,95 \% \mathrm{CL}=21.4-52.3$
MSY = 5.78, 95\% CL = 5.08-6.58
Relative biomass last year $=0.314 \mathrm{k}, 2.5 \mathrm{th}=0.0487,97.5 \mathrm{th}=0.397$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.04$

Results for Management (based on CMSY analysis)
Fmsy $=0.345,95 \% C L=0.232-0.515$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.345,95 \% C L=0.232-0.515$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=5.78,95 \% \mathrm{CL}=5.08-6.58$
Bmsy = 16.7, 95\% CL = 10.7-26.2
Biomass in last year $=10.5,2.5$ th perc $=1.63,97.5$ perc $=13.3$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.628,2.5$ th perc $=0.0973,97.5$ perc $=0.794$
Fishing mortality in last year $=0.418,2.5$ th perc $=0.33,97.5$ perc $=2.69$
F/Fmsy $=1.21,2.5$ th perc $=0.956,97.5$ perc $=7.8$
Stock status and exploitation in 2014
Biomass $=10.5, \mathrm{~B} /$ Bmsy $=0.628$, fishing mortality $\mathrm{F}=0.418, \mathrm{~F} / \mathrm{Fmsy}=1.21$
Comment: OK (RF 27.09.16)

Species: Sprattus sprattus, stock: spr-ech
Sprat in Divisions VIId,e (English Channel)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/spr-ech.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1985-2015, abundance $=$ CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2003 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.21$ - 1.1 expert, , prior range for $k=9.49-301$
Prior range of $q=0.0552-0.254$

Results of CMSY analysis with altogether 1151 viable trajectories for 945 r-k pairs
$r=0.705,95 \% C L=0.463-1.07, k=24.6,95 \% C L=11.1-54.8$
MSY = 4.34, 95\% CL = 1.91-9.87
Relative biomass last year $=0.632 \mathrm{k}, 2.5 \mathrm{th}=0.517,97.5 \mathrm{th}=0.751$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.636$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.587,95 \% C L=0.432-0.798, \mathrm{k}=31.2,95 \% \mathrm{CL}=20.8-46.6$
MSY = 4.58, 95\% CL = 3.66-5.72
Relative biomass in last year $=0.7 \mathrm{k}, 2.5$ th perc $=0.555,97.5$ th perc $=0.858$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.469$
$q=0.0724, \mathrm{lc\mid}=0.0543, \mathrm{ucl}=0.0966$

Results for Management (based on BSM analysis)
Fmsy $=0.294,95 \% C L=0.216-0.399$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.294,95 \% C L=0.216-0.399$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=4.58,95 \% C L=3.66-5.72$
Bmsy $=15.6$, 95\% CL = 10.4-23.3
Biomass in last year $=21.8,2.5$ th perc $=17.3,97.5$ perc $=26.7$
$B /$ Bmsy in last year $=1.4,2.5$ th perc $=1.11,97.5$ perc $=1.72$
Fishing mortality in last year $=0.138,2.5$ th perc $=0.112,97.5$ perc $=0.174$
F/Fmsy $=0.469,2.5$ th perc $=0.382,97.5$ perc $=0.591$

Stock status and exploitation in 2014
Biomass $=22.2, \mathrm{~B} / \mathrm{Bmsy}=1.42$, fishing mortality $\mathrm{F}=0.166, \mathrm{~F} / \mathrm{Fmsy}=0.564$
Comment: OK (RF 27.09.16)

D: Biomass

Year

F: Equilibrium curve

Species: Brosme brosme , stock: usk-rock
Tusk in Division VIb (Rockall)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/usk-rock.pdf
Region: Northeast Atlantic , Rockall
Catch data used from years 1988-2015 , abundance = None
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2006 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.21-0.62$ expert, , prior range for $k=2.37-28$
Results of CMSY analysis with altogether 1421 viable trajectories for 1189 r -k pairs
$r=0.454,95 \% \mathrm{CL}=0.339-0.608, \mathrm{k}=9.69,95 \% \mathrm{CL}=6.29-14.9$
MSY = 1.1, 95\% CL = 0.773-1.56
Relative biomass last year $=0.122 \mathrm{k}, 2.5 \mathrm{th}=0.0134,97.5 \mathrm{th}=0.291$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.398$

Results for Management (based on CMSY analysis)
Fmsy $=0.227,95 \% C L=0.169-0.304$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.111,95 \% C L=0.0829-0.149$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 1.1, 95\% CL = 0.773-1.56
Bmsy $=4.85,95 \% \mathrm{CL}=3.15-7.47$
Biomass in last year $=1.19,2.5$ th perc $=0.13,97.5$ perc $=2.82$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.245,2.5$ th perc $=0.0269,97.5$ perc $=0.582$
Fishing mortality in last year $=0.191,2.5$ th perc $=0.0802,97.5$ perc $=1.74$
$\mathrm{F} /$ Fmsy $=1.72,2.5$ th $\mathrm{perc}=0.722,97.5$ perc $=15.6$
Stock status and exploitation in 2014
Biomass $=1.1, \mathrm{~B} / \mathrm{Bmsy}=0.226$, fishing mortality $\mathrm{F}=0.0347$, $\mathrm{F} / \mathrm{Fmsy}=0.338$
Comment: OK (RF 27.09.16)

D: Biomass

Year

Catch usk-rock

Exploitation

E: Exploitation rate

Year

F: Equilibrium curve

Relative biomass B / k

Species: Merlangius merlangus, stock: whg-7e-k
Whiting in Division VIIe-k
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/whg-7e-k.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1999-2015, abundance $=$ CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01 - 0.4 in year 2009 default
Prior final relative biomass $=0.4-0.8$ expert
Prior range for $r=0.25-1$ expert, , prior range for $k=50.7-1229$
Prior range of $q=0.286-1.15$

Results of CMSY analysis with altogether 2443 viable trajectories for 1982 r-k pairs
$r=0.674,95 \% C L=0.464-0.979, k=235,95 \% C L=80.5-686$
MSY = 39.6, 95\% CL = 8.96-175
Relative biomass last year $=0.682 \mathrm{k}, 2.5 \mathrm{th}=0.435,97.5 \mathrm{th}=0.793$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.315$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.436,95 \% C L=0.308-0.619, k=226,95 \% C L=149-343$
MSY = 24.7, 95\% CL = 17.9-34.1
Relative biomass in last year $=0.635 \mathrm{k}, 2.5$ th perc $=0.439,97.5$ th perc $=0.818$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.616$
$\mathrm{q}=0.575, \mathrm{lcl}=0.428, \mathrm{ucl}=0.773$

Results for Management (based on BSM analysis)
Fmsy $=0.218,95 \% C L=0.154-0.309$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.218,95 \% C L=0.154-0.309$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 24.7, 95\% CL = 17.9-34.1
Bmsy = 113, 95\% CL = 74.6-171
Biomass in last year $=144,2.5$ th perc $=99.2,97.5$ perc $=185$
$B /$ Bmsy in last year $=1.27,2.5$ th perc $=0.877,97.5$ perc $=1.64$
Fishing mortality in last year $=0.134,2.5$ th perc $=0.104,97.5$ perc $=0.194$
F/Fmsy $=0.616,2.5$ th perc $=0.477,97.5$ perc $=0.89$

Stock status and exploitation in 2014
Biomass $=127$, $B / B m s y=1.12$, fishing mortality $F=0.133, F / F m s y=0.609$
Comment: OK (RF 27.09.16)

B : Finding viable $r-k$

E: Exploitation rate

F: Equilibrium curve

Catch whg-7e-k

Species: Merlangius merlangus , stock: whg-iris
Whiting in Division VIIa (Irish Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/whg-iris.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1988-2015 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.3 in year 2005 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.25-1$ expert, , prior range for $k=12.5-202$
Prior range of $q=6.94 e-05-0.000279$
Results of CMSY analysis with altogether 1379 viable trajectories for 1309 r -k pairs
$r=0.535,95 \% \mathrm{CL}=0.393-0.729, \mathrm{k}=92.5,95 \% \mathrm{CL}=51.3-167$
MSY = 12.4, 95\% CL = 6.27-24.4
Relative biomass last year $=0.0984 \mathrm{k}, 2.5$ th $=0.0135,97.5$ th $=0.285$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.669$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.577,95 \% \mathrm{CL}=0.385-0.865, \mathrm{k}=70.8,95 \% \mathrm{CL}=50.3-99.7$
MSY = 10.2, 95\% CL = 7.98-13.1
Relative biomass in last year $=0.0388 \mathrm{k}$, 2.5th perc $=0.0221,97.5$ th perc $=0.098$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.43$
$\mathrm{q}=0.000107, \mathrm{lcl}=8.14 \mathrm{e}-05, \mathrm{ucl}=0.00014$
Results for Management (based on BSM analysis)
Fmsy $=0.288,95 \% \mathrm{CL}=0.192-0.432$ (if B > 1/2 Bmsy then Fmsy $=0.5$ r)
Fmsy $=0.0448,95 \% C L=0.0299-0.0671$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 10.2, 95\% CL = 7.98-13.1
Bmsy $=35.4,95 \%$ CL $=25.2-49.9$
Biomass in last year $=2.75,2.5$ th perc $=1.56,97.5$ perc $=6.94$
$B /$ Bmsy in last year $=0.0776,2.5$ th perc $=0.0442,97.5$ perc $=0.196$
Fishing mortality in last year $=0.699,2.5$ th perc $=0.277,97.5$ perc $=1.23$
F/Fmsy $=15.6,2.5$ th perc $=6.19,97.5$ perc $=27.5$
Stock status and exploitation in 2014
Biomass $=3.87, \mathrm{~B} / \mathrm{Bmsy}=0.109$, fishing mortality $\mathrm{F}=0.517, \mathrm{~F} / \mathrm{Fmsy}=8.2$
Comment: OK (RF 27.09.16)

E: Exploitation rate

Year

F: Equilibrium curve

Biomass

Exploitation

Species: Merlangius merlangus, stock: whg-scow
Whiting in Division Vla (West of Scotland)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/whg-scow.pdf
Region: Northeast Atlantic , Celtic Seas
Catch data used from years 1981-2015, abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.01 - 0.4 in year 2008 default
Prior final relative biomass $=0.01-0.4$, default
Prior range for $r=0.25-1$ expert, , prior range for $k=20.5-331$
Prior range of $q=1.78-7.17$

Results of CMSY analysis with altogether 1598 viable trajectories for 1278 r-k pairs
$r=0.512,95 \% C L=0.332-0.788, k=107,95 \% C L=80-142$
MSY = 13.6, 95\% CL = 12.1-15.3
Relative biomass last year $=0.125 \mathrm{k}, 2.5 \mathrm{th}=0.013,97.5 \mathrm{th}=0.374$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.293$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.871,95 \% C L=0.683-1.11, k=71.1,95 \% C L=54.3-93.2$
MSY = 15.5 , 95\% CL = 12.7-18.9
Relative biomass in last year $=0.0971 \mathrm{k}, 2.5$ th perc $=0.0539,97.5$ th perc $=0.15$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.353$
$\mathrm{q}=1.32, \mathrm{lcl}=1.04, \mathrm{ucl}=1.66$

Results for Management (based on BSM analysis)
Fmsy $=0.436,95 \% C L=0.341-0.556$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.169,95 \% C L=0.133-0.216$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 15.5, 95\% CL = 12.7-18.9
Bmsy $=35.6$, 95\% CL $=27.1-46.6$
Biomass in last year $=6.91,2.5$ th perc $=3.83,97.5$ perc $=10.7$
$B /$ Bmsy in last year $=0.194,2.5$ th perc $=0.108,97.5$ perc $=0.301$
Fishing mortality in last year $=0.154,2.5$ th perc $=0.0993,97.5$ perc $=0.277$
F/Fmsy $=0.908,2.5$ th perc $=0.587,97.5$ perc $=1.64$

Stock status and exploitation in 2014
Biomass $=5.94, B / B m s y=0.167$, fishing mortality $F=0.129, F / F m s y=0.886$
Comment: OK (RF 27.09.16)

D: Biomass

Year

Catch whg-scow

Exploitation

B: Finding viable r-k

E: Exploitation rate

Year

Relative biomass B / k

Bay of Biscay and Iberian Sea, including Azores (analyzed with CMSY_O_7m.R)

Species: Beryx spp. , stock: alf-comb
Alfonsinos/golden eye perch (Beryx spp.) in the Northeast Atlantic
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/alf-comb.pdf
Region: Northeast Atlantic , Azores
Catch data used from years 1988-2015 , abundance $=$ None
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass $=0.01-0.4$ in year 2003 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.05-0.5$ default , prior range for $k=2.72-109$

Results of CMSY analysis with altogether 10760 viable trajectories for 4546 r-k pairs
$r=0.266,95 \% C L=0.151-0.469, k=9.95,95 \% C L=4.79-20.7$
MSY $=0.661,95 \%$ CL $=0.443-0.986$
Relative biomass last year $=0.287 \mathrm{k}, 2.5$ th $=0.0202,97.5$ th $=0.396$
Exploitation $F /(r / 2)$ in last year $=0.807$

Results for Management (based on CMSY analysis)
Fmsy $=0.133,95 \% C L=0.0754-0.234$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.133,95 \% C L=0.0754-0.234$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=0.661,95 \% C L=0.443-0.986$
Bmsy $=4.98$, 95\% CL $=2.4-10.3$
Biomass in last year $=2.86,2.5$ th perc $=0.201,97.5$ perc $=3.94$
$B / B m s y$ in last year $=0.574,2.5$ th perc $=0.0403,97.5$ perc $=0.792$
Fishing mortality in last year $=0.128,2.5$ th perc $=0.0926,97.5$ perc $=1.82$
F/Fmsy $=0.962,2.5$ th perc $=0.697,97.5$ perc $=13.7$

Stock status and exploitation in 2014
Biomass $=2.77, B / B m s y=0.556$, fishing mortality $F=0.102, F / F m s y=0.767$
Comment: OK (RF 28.09.16)

D: Biomass

Year

Catch alf-comb

Exploitation

E: Exploitation rate

Year

F: Equilibrium curve

Species: Lophius budegassa, stock: anb-8c9a
Black-bellied anglerfish in Divisions VIIIc and IXa (Cantabrian Sea, Atlantic Iberian waters)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/anb-8c9a.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1980-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.2-0.54$ expert, , prior range for $k=6.25-67.4$
Prior range of $q=0.000132-0.000435$

Results of CMSY analysis with altogether 1945 viable trajectories for 1501 r-k pairs
$r=0.375,95 \% C L=0.288-0.489, k=23.7,95 \% C L=16.9-33.2$
MSY = 2.22, 95\% CL = 1.71-2.89
Relative biomass last year $=0.504 \mathrm{k}, 2.5 \mathrm{th}=0.236,97.5$ th $=0.595$
Exploitation $F /(r / 2)$ in last year $=0.46$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.386,95 \% C L=0.317-0.471, k=20.4,95 \% C L=16.7-24.9$
MSY = 1.97, 95\% CL = 1.79-2.16
Relative biomass in last year $=0.55 \mathrm{k}, 2.5$ th perc $=0.481,97.5$ th perc $=0.623$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.481$
$\mathrm{q}=9.59 \mathrm{e}-05, \mathrm{lcl}=8.04 \mathrm{e}-05, \mathrm{ucl}=0.000114$

Results for Management (based on BSM analysis)
Fmsy $=0.193,95 \% C L=0.158-0.236$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.193,95 \% C L=0.158-0.236$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 1.97, 95\% CL = 1.79-2.16
Bmsy $=10.2$, 95\% CL $=8.33-12.5$
Biomass in last year $=11.2$, 2.5 th perc $=9.8,97.5$ perc $=12.7$
B/Bmsy in last year $=1.1,2.5$ th perc $=0.962,97.5$ perc $=1.25$
Fishing mortality in last year $=0.0928,2.5$ th perc $=0.082,97.5$ perc $=0.106$
F/Fmsy $=0.481,2.5$ th perc $=0.425,97.5$ perc $=0.55$

Stock status and exploitation in 2014
Biomass $=10.5, \mathrm{~B} / \mathrm{Bmsy}=1.04$, fishing mortality $\mathrm{F}=0.0938, \mathrm{~F} / \mathrm{Fmsy}=0.486$
Comment: OK (RF 27.09.16)

D: Biomass

Catch anb-8c9a

Exploitation

Species: Engraulis encrasicolus, stock: ane-bisc
Anchovy in in Subarea VIII (Bay of Biscay)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/ane-bisc.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1960-2015, abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.01-0.3 in year 2005 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.26-1.2$ expert, , prior range for $k=60.1-1073$
Prior range of $q=2.08-8.77$
Results of CMSY analysis with altogether 27 viable trajectories for $26 \mathrm{r}-\mathrm{k}$ pairs
$r=0.317,95 \% \mathrm{CL}=0.288-0.348, \mathrm{k}=477,95 \% \mathrm{CL}=416-547$
MSY = 37.8, 95\% CL = 33.4-42.7
Relative biomass last year $=0.513 \mathrm{k}, 2.5 \mathrm{th}=0.302,97.5 \mathrm{th}=0.582$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.512$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.853,95 \% C L=0.661-1.1, k=238,95 \% C L=196-290$
MSY = 50.7, 95\% CL = 43.3-59.5
Relative biomass in last year $=0.447 \mathrm{k}, 2.5$ th perc $=0.209,97.5$ th perc $=0.668$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.554$
$q=1.52, \mathrm{lcl}=1.15, u c l=2.02$
Results for Management (based on BSM analysis)
Fmsy $=0.426,95 \% \mathrm{CL}=0.33-0.55$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.426,95 \% C L=0.33-0.55$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 50.7, 95\% CL = 43.3-59.5
Bmsy $=119$, 95% CL $=97.8-145$
Biomass in last year $=106,2.5$ th perc $=49.7,97.5$ perc $=159$
$\mathrm{B} /$ Bmsy in last year $=0.895,2.5$ th perc $=0.417,97.5$ perc $=1.34$
Fishing mortality in last year $=0.236,2.5$ th perc $=0.158,97.5$ perc $=0.506$
F/Fmsy $=0.554,2.5$ th perc $=0.371,97.5$ perc $=1.19$
Stock status and exploitation in 2014
Biomass $=78.3$, $\mathrm{B} /$ Bmsy $=0.658$, fishing mortality $\mathrm{F}=0.257$, $\mathrm{F} / \mathrm{Fmsy}=0.603$
Comment: OK (RF 27.09.16)

B : Finding viable $\mathrm{r}-\mathrm{k}$

C: Analysis of viable r-k

E: Exploitation rate

Species: Engraulis encrasicolus , stock: ane-pore
Anchovy in Division IXa (Atlantic Iberian Waters)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/ane-pore.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1988-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= $0.01-0.3$ in year 2005 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.26-1.2$ expert, , prior range for $k=7.35-131$
Prior range of $q=1.25-5.28$
Results of CMSY analysis with altogether 2164 viable trajectories for 1763 r -k pairs
$r=0.799,95 \%$ CL $=0.559-1.14, k=31.6,95 \% C L=21.1-47.3$
$\mathrm{MSY}=6.3,95 \% \mathrm{CL}=5.74-6.92$
Relative biomass last year $=0.271 \mathrm{k}, 2.5$ th $=0.0389,97.5$ th $=0.395$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.49$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.73,95 \% \mathrm{CL}=0.526-1.01, \mathrm{k}=34.6,95 \% \mathrm{CL}=24.5-48.7$
$\mathrm{MSY}=6.32,95 \% \mathrm{CL}=5.71-6.98$
Relative biomass in last year $=0.347 \mathrm{k}, 2.5$ th perc $=0.229,97.5$ th perc $=0.457$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.19$
$\mathrm{q}=1.94, \mathrm{lcl}=1.49$, ucl $=2.54$
Results for Management (based on BSM analysis)
Fmsy $=0.365,95 \% \mathrm{CL}=0.263-0.507$ (if $\mathrm{B}>1 / 2 \mathrm{Bmsy}$ then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.365,95 \% C L=0.263-0.507$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=6.32,95 \% \mathrm{CL}=5.71-6.98$
Bmsy $=17.3,95 \% \mathrm{CL}=12.3-24.4$
Biomass in last year $=12,2.5$ th perc $=7.91,97.5$ perc $=15.8$
$\mathrm{B} /$ Bmsy in last year $=0.695,2.5$ th perc $=0.457,97.5$ perc $=0.913$
Fishing mortality in last year $=0.799,2.5$ th perc $=0.608,97.5$ perc $=1.21$
F/Fmsy $=2.19,2.5$ th perc $=1.66,97.5$ perc $=3.32$
Stock status and exploitation in 2014
Biomass $=13.2, \mathrm{~B} /$ Bmsy $=0.764$, fishing mortality $\mathrm{F}=0.782$, $\mathrm{F} / \mathrm{Fmsy}=2.14$
Comment: OK (RF 27.09.16)

Year

Catch ane-pore

Species: Lophius piscatorius , stock: anp-78ab
White anglerfish in Divisions VIIb-k and VIIIa,b,d (Southern Celtic Seas, Bay of Biscay)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/anp-78ab.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1986-2015, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.14-0.64$ expert, , prior range for $k=41.9-739$
Prior range of $q=1.83 e-05-7.69 e-05$
Results of CMSY analysis with altogether 1096 viable trajectories for 792 r-k pairs
$r=0.403,95 \% \mathrm{CL}=0.258-0.627, \mathrm{k}=233,95 \% \mathrm{CL}=149-364$
MSY = 23.4, 95\% CL = 18.3-29.9
Relative biomass last year $=0.259 \mathrm{k}, 2.5 \mathrm{th}=0.0334,97.5 \mathrm{th}=0.391$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=2.06$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.491,95 \% \mathrm{CL}=0.354-0.68, \mathrm{k}=195,95 \% \mathrm{CL}=137-277$
MSY = 24, 95\% CL = 20.4-28.1
Relative biomass in last year $=0.41 \mathrm{k}, 2.5$ th perc $=0.283,97.5$ th perc $=0.5$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.29$
$\mathrm{q}=3.13 \mathrm{e}-05, \mathrm{lcl}=2.37 \mathrm{e}-05, \mathrm{ucl}=4.14 \mathrm{e}-05$
Results for Management (based on BSM analysis)
Fmsy $=0.246,95 \% C L=0.177-0.34$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.246,95 \% C L=0.177-0.34$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 24, 95\% CL = 20.4-28.1
Bmsy $=97.6$, 95\% CL $=68.7-139$
Biomass in last year $=80,2.5$ th perc $=55.2,97.5$ perc $=97.6$
$\mathrm{B} /$ Bmsy in last year $=0.82,2.5$ th perc $=0.566,97.5$ perc $=1$
Fishing mortality in last year $=0.316,2.5$ th perc $=0.259,97.5$ perc $=0.458$
F/Fmsy $=1.29,2.5$ th perc $=1.05,97.5$ perc $=1.86$
Stock status and exploitation in 2014
Biomass $=84.4, \mathrm{~B} /$ Bmsy $=0.865$, fishing mortality $\mathrm{F}=0.3, \mathrm{~F} / \mathrm{Fmsy}=1.22$
Comment: OK (RF 27.09.16)

D: Biomass

B: Finding viable r-k

E: Exploitation rate

Year

C: Analysis of viable r-k

Species: Lophius piscatorius, stock: anp-8c9a
White anglerfish in Divisions VIIIc and IXa (Cantabrian Sea, Atlanic Iberian Waters)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/anp-8c9a.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1980-2015, abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 1995 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.14-0.64$ expert, , prior range for $k=19.8-525$
Prior range of $q=0.238-0.999$

Results of CMSY analysis with altogether 3275 viable trajectories for 954 r-k pairs
$r=0.434,95 \% C L=0.307-0.614, k=40.2,95 \% C L=26.1-62$
MSY = 4.36, 95\% CL = 3.69-5.17
Relative biomass last year $=0.874 \mathrm{k}, 2.5 \mathrm{th}=0.758,97.5 \mathrm{th}=0.899$
Exploitation $F /(r / 2)$ in last year $=0.23$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.452,95 \% C L=0.325-0.628, k=42.9,95 \% C L=33-55.6$
MSY = 4.84, 95\% CL = 3.87-6.06
Relative biomass in last year $=0.742 \mathrm{k}, 2.5$ th perc $=0.636,97.5$ th perc $=0.866$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.243$
$\mathrm{q}=0.254, \mathrm{lcl}=0.203, \mathrm{ucl}=0.317$

Results for Management (based on BSM analysis)
Fmsy $=0.226,95 \% C L=0.163-0.314$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.226,95 \% C L=0.163-0.314$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 4.84, 95\% CL = 3.87-6.06
Bmsy $=21.4$, 95\% CL = 16.5-27.8
Biomass in last year $=31.8,2.5$ th perc $=27.3,97.5$ perc $=37.1$
B/Bmsy in last year $=1.48,2.5$ th perc $=1.27,97.5$ perc $=1.73$
Fishing mortality in last year $=0.0549,2.5$ th perc $=0.0471,97.5$ perc $=0.0641$
F/Fmsy $=0.243,2.5$ th perc $=0.208,97.5$ perc $=0.284$

Stock status and exploitation in 2014
Biomass $=31.5$, $\mathrm{B} / \mathrm{Bmsy}=1.47$, fishing mortality $\mathrm{F}=0.0635, \mathrm{~F} / \mathrm{Fmsy}=0.281$
Comment: OK (RF 27.09.16)

Year

Catch anp-8c9a

Year

F: Equilibrium curve

Relative biomass B / k

Species: Dicentrarchus labrax , stock: Bss-8ab
Sea bass in Divisions VIIIa,b (Bay of Biscay North and Central)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/Bss-8ab.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 2000-2014 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= $0.01-0.4$ in year 2005 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.16-0.88$ expert, , prior range for $k=3.2-70.3$
Prior range of $q=9.91 e-05-0.000465$
Results of CMSY analysis with altogether 3192 viable trajectories for 1739 r -k pairs
$r=0.574,95 \% \mathrm{CL}=0.383-0.86, \mathrm{k}=22.8,95 \% \mathrm{CL}=12.5-41.3$
MSY = 3.27, 95\% CL = 2.24-4.77
Relative biomass last year $=0.435 \mathrm{k}, 2.5 \mathrm{th}=0.221,97.5 \mathrm{th}=0.592$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=0.965$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.58,95 \% \mathrm{CL}=0.396-0.849, \mathrm{k}=18.9,95 \% \mathrm{CL}=12.6-28.2$
MSY = 2.74, 95\% CL = 2.29-3.28
Relative biomass in last year $=0.444 \mathrm{k}, 2.5$ th perc $=0.3,97.5$ th perc $=0.614$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.23$
$q=0.000174,|c|=0.000128, u c l=0.000238$
Results for Management (based on BSM analysis)
Fmsy $=0.29,95 \% C L=0.198-0.425$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.29,95 \% C L=0.198-0.425$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=2.74,95 \%$ CL $=2.29-3.28$
Bmsy = 9.44, 95\% CL = 6.32-14.1
Biomass in last year $=8.38,2.5$ th perc $=5.67,97.5$ perc $=11.6$
$B /$ Bmsy in last year $=0.888,2.5$ th perc $=0.6,97.5$ perc $=1.23$
Fishing mortality in last year $=0.357,2.5$ th perc $=0.258,97.5$ perc $=0.528$
F/Fmsy $=1.23,2.5$ th perc $=0.888,97.5$ perc $=1.82$
Stock status and exploitation in 2014
Biomass $=8.38, \mathrm{~B} / \mathrm{Bmsy}=0.888$, fishing mortality $\mathrm{F}=0.357$, $\mathrm{F} / \mathrm{Fmsy}=1.23$
Comment: OK (RF 27.09.16)

Year
r

r

Year
Catch Bss-8ab

F: Equilibrium curve

Species: Dicentrarchus labrax , stock: Bss-8c9a
Sea bass in Divisions VIIIc and IXa (Bay of Biscay South, Atlantic Iberian Waters)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/Bss-8c9a.pdf
Region: Northeast Atlantic, Bay of Biscay and Iberian coast
Catch data used from years 1978-2014 , abundance $=$ None
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2003 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.16-0.88$ expert, , prior range for $k=1.11-24.5$
Results of CMSY analysis with altogether 1264 viable trajectories for 770 r -k pairs
$r=0.574,95 \% C L=0.383-0.86, k=5.16,95 \% C L=3.26-8.15$
$\mathrm{MSY}=0.74,95 \% \mathrm{CL}=0.666-0.823$
Relative biomass last year $=0.354 \mathrm{k}, 2.5 \mathrm{th}=0.207,97.5 \mathrm{th}=0.554$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.69$

Results for Management (based on CMSY analysis)
Fmsy $=0.287,95 \% \mathrm{CL}=0.192-0.43$ (if $\mathrm{B}>1 / 2$ Bmsy then $\mathrm{Fmsy}=0.5 \mathrm{r}$)
Fmsy $=0.287,95 \% C L=0.192-0.43$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.74,95 \% \mathrm{CL}=0.666-0.823$
Bmsy $=2.58,95 \% \mathrm{CL}=1.63-4.08$
Biomass in last year $=1.83,2.5$ th perc $=1.07,97.5$ perc $=2.86$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.709,2.5$ th perc $=0.415,97.5$ perc $=1.11$
Fishing mortality in last year $=0.502,2.5$ th perc $=0.321,97.5$ perc $=0.858$
F/Fmsy $=1.75,2.5$ th perc $=1.12,97.5$ perc $=2.99$
Stock status and exploitation in 2014
Biomass $=1.83, B /$ Bmsy $=0.709$, fishing mortality $\mathrm{F}=0.502$, $\mathrm{F} / \mathrm{Fmsy}=1.75$
Comment: OK (RF 27.09.16)

Year
Catch Bss-8c9a

E: Exploitation rate

Year

F: Equilibrium curve

Species: Merluccius merluccius, stock: hke-soth
Hake in Divisions VIIIc and IXa (Southern stock) (Cantabrian Sea, Atlantic Iberian waters)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/hke-soth.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1982-2015, abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.01 - 0.4 in year 2005 expert
Prior final relative biomass $=0.2$ - 0.6 expert
Prior range for $r=0.22-0.95$ expert, , prior range for $k=22.5-388$
Prior range of $q=0.236-0.98$

Results of CMSY analysis with altogether 1272 viable trajectories for 1118 r-k pairs
$r=0.552,95 \% C L=0.352-0.864, k=110,95 \% C L=78.1-154$
MSY = 15.1, 95\% CL = 13.7-16.7
Relative biomass last year $=0.28 \mathrm{k}, 2.5 \mathrm{th}=0.21,97.5 \mathrm{th}=0.444$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.66$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.537,95 \% C L=0.386-0.747, k=156,95 \% C L=118-206$
MSY = 21, 95\% CL = 16.6-26.6
Relative biomass in last year $=0.43 \mathrm{k}, 2.5$ th perc $=0.359,97.5$ th perc $=0.509$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.767$
$\mathrm{q}=0.302, \mathrm{lcl}=0.236, \mathrm{ucl}=0.387$

Results for Management (based on BSM analysis)
Fmsy $=0.269,95 \% C L=0.193-0.374$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.269,95 \% C L=0.193-0.374$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 21, 95\% CL = 16.6-26.6
Bmsy $=78.1$, 95\% CL = 59.1-103
Biomass in last year $=67.2$, 2.5 th perc $=56.1,97.5$ perc $=79.5$
$B /$ Bmsy in last year $=0.86,2.5$ th perc $=0.718,97.5$ perc $=1.02$
Fishing mortality in last year $=0.206,2.5$ th perc $=0.174,97.5$ perc $=0.247$
F/Fmsy $=0.767,2.5$ th perc $=0.648,97.5$ perc $=0.918$

Stock status and exploitation in 2014
Biomass $=66.8, \mathrm{~B} / \mathrm{Bmsy}=0.856$, fishing mortality $\mathrm{F}=0.217$, $\mathrm{F} / \mathrm{Fmsy}=0.806$
Comment: OK (RF 27.09.16) r updated

D: Biomass

Species: Trachurus trachurus, stock: hom-soth
Horse mackerel in Division IXa (Atlantic Iberian Waters)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/hom-soth.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1992-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2007 expert
Prior final relative biomass $=0.4-0.8$ expert
Prior range for $r=0.22-0.98$ expert, , prior range for $k=67.4-1796$
Prior range of $q=1.94-8.17$

Results of CMSY analysis with altogether 4612 viable trajectories for 1787 r-k pairs
$r=0.67,95 \% C L=0.472-0.953, k=178,95 \% C L=109-291$
MSY = 29.9, 95\% CL = 22.7-39.3
Relative biomass last year $=0.615 \mathrm{k}, 2.5 \mathrm{th}=0.433,97.5$ th $=0.75$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.824$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.464,95 \% C L=0.339-0.633, k=265,95 \% C L=188-373$
MSY = 30.7, 95\% CL = 26.8-35.2
Relative biomass in last year $=0.683 \mathrm{k}, 2.5$ th perc $=0.503,97.5$ th perc $=0.854$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.78$
$q=3.04, \mathrm{lc\mid}=2.31, u c \mid=3.99$

Results for Management (based on BSM analysis)
Fmsy $=0.232,95 \% C L=0.17-0.317$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.232,95 \% C L=0.17-0.317$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 30.7, 95\% CL = 26.8-35.2
Bmsy $=133$, 95\% CL = 94.1-187
Biomass in last year $=181,2.5$ th perc $=133,97.5$ perc $=226$
$B /$ Bmsy in last year $=1.37,2.5$ th perc $=1.01,97.5$ perc $=1.71$
Fishing mortality in last year $=0.181,2.5$ th perc $=0.145,97.5$ perc $=0.245$
F/Fmsy $=0.78,2.5$ th perc $=0.624,97.5$ perc $=1.06$

Stock status and exploitation in 2014
Biomass $=167, \mathrm{~B} / \mathrm{Bmsy}=1.26$, fishing mortality $\mathrm{F}=0.174$, $\mathrm{F} / \mathrm{Fmsy}=0.75$
Comment: OK (RF 27.09.16)

E: Exploitation rate

Species: Trachurus picturatus , stock: jaa-10
Blue jack mackerel (Trachurus picturatus) in Subdivision Xa2 (Azores)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/jaa-10.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1980-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2001 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.27-0.96$ expert, , prior range for $k=4.11-59.2$
Prior range of $q=0.0208-0.079$
Results of CMSY analysis with altogether 344 viable trajectories for 329 r -k pairs
$r=0.449,95 \% C L=0.362-0.558, k=28.3,95 \% C L=20.9-38.2$
MSY = 3.18, 95\% CL = 2.44-4.13
Relative biomass last year $=0.237 \mathrm{k}, 2.5 \mathrm{th}=0.0184,97.5 \mathrm{th}=0.396$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=0.784$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.581,95 \% \mathrm{CL}=0.435-0.776, \mathrm{k}=18.9,95 \% \mathrm{CL}=12.9-27.7$
MSY = 2.75, 95\% CL = 2.02-3.74
Relative biomass in last year $=0.259 \mathrm{k}, 2.5$ th perc $=0.14,97.5$ th perc $=0.349$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=0.798$
$\mathrm{q}=0.0293, \mathrm{lcl}=0.0231, \mathrm{ucl}=0.0372$
Results for Management (based on BSM analysis)
Fmsy $=0.291,95 \% \mathrm{CL}=0.218-0.388$ (if $\mathrm{B}>1 / 2$ Bmsy then Fmsy $=0.5 \mathrm{r}$)
Fmsy $=0.291,95 \% C L=0.218-0.388$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=2.75,95 \% \mathrm{CL}=2.02-3.74$
Bmsy $=9.45,95 \%$ CL $=6.46-13.8$
Biomass in last year $=4.9,2.5$ th perc $=2.64,97.5$ perc $=6.59$
$\mathrm{B} /$ Bmsy in last year $=0.518,2.5$ th perc $=0.279,97.5$ perc $=0.698$
Fishing mortality in last year $=0.232,2.5$ th perc $=0.172,97.5$ perc $=0.431$
F/Fmsy $=0.798,2.5$ th perc $=0.593,97.5$ perc $=1.48$
Stock status and exploitation in 2014
Biomass $=4, \mathrm{~B} /$ Bmsy $=0.423$, fishing mortality $\mathrm{F}=0.313$, $\mathrm{F} / \mathrm{Fmsy}=1.27$
Comment: OK (RF 27.09.16)

B : Finding viable $\mathrm{r}-\mathrm{k}$

Exploitation rate

Year

C: Analysis of viable r-k

F: Equilibrium curve

Catch jaa-10

Exploitation

Year

Species: Lepidorhombus boscii , stock: mgb-8c9a
Four-spot megrim in Divisions VIIIc and IXa (Bay of Biscay South, Atlantic Iberian Waters East)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/mgb-8c9a.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1986-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= 0.01-0.3 in year 2001 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.05-0.5$ default , prior range for $k=5.32-213$
Prior range of $q=0.3-1.9$
Results of CMSY analysis with altogether 2433 viable trajectories for 1987 r-k pairs
$r=0.266,95 \% C L=0.151-0.469, k=33.7,95 \% C L=14.8-76.7$
MSY = 2.24, 95\% CL = 1.26-3.99
Relative biomass last year $=0.414 \mathrm{k}, 2.5 \mathrm{th}=0.216,97.5 \mathrm{th}=0.591$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.917$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.301,95 \% \mathrm{CL}=0.212-0.428, \mathrm{k}=25.2,95 \% \mathrm{CL}=17.3-36.8$
MSY = 1.9, 95\% CL = 1.57-2.29
Relative biomass in last year $=0.468 \mathrm{k}$, 2.5th perc $=0.356,97.5$ th perc $=0.602$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.983$
$\mathrm{q}=0.557, \mathrm{lcl}=0.399$, ucl $=0.778$
Results for Management (based on BSM analysis)
Fmsy $=0.151,95 \% \mathrm{CL}=0.106-0.214$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5$ r)
Fmsy $=0.151,95 \%$ CL $=0.106-0.214$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 1.9, 95\% CL = 1.57-2.29
Bmsy = 12.6, 95\% CL = 8.63-18.4
Biomass in last year $=11.8,2.5$ th perc $=8.97,97.5$ perc $=15.2$
$\mathrm{B} /$ Bmsy in last year $=0.936,2.5$ th perc $=0.713,97.5$ perc $=1.2$
Fishing mortality in last year $=0.148,2.5$ th perc $=0.115,97.5$ perc $=0.194$
F/Fmsy $=0.983,2.5$ th perc $=0.763,97.5$ perc $=1.29$
Stock status and exploitation in 2014
Biomass $=11.4, \mathrm{~B} / \mathrm{Bmsy}=0.901$, fishing mortality $\mathrm{F}=0.171, \mathrm{~F} / \mathrm{Fmsy}=1.14$
Comment: OK (RF 27.09.16)

D: Biomass

Catch mgb-8c9a

Exploitation

E: Exploitation rate

F: Equilibrium curve

Species: Lepidorhombus whiffiagonis , stock: mgw-8c9a
Megrim in Divisions VIIIc and IXa
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/mgw-8c9a.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1986-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2009 default
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.34-1$ expert, , prior range for $k=0.881-10.4$
Prior range of $q=1.32-4.51$
Results of CMSY analysis with altogether 380 viable trajectories for 371 r -k pairs
$r=0.53,95 \% \mathrm{CL}=0.419-0.67, \mathrm{k}=5.26,95 \% \mathrm{CL}=3.72-7.45$
MSY = 0.697, 95\% CL = 0.462-1.05
Relative biomass last year $=0.162 \mathrm{k}, 2.5 \mathrm{th}=0.0159,97.5 \mathrm{th}=0.394$
Exploitation $\mathrm{F} /(\mathrm{r} / 2$) in last year $=1.4$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.815,95 \% \mathrm{CL}=0.642-1.04, \mathrm{k}=3.7,95 \% \mathrm{CL}=3-4.57$
MSY $=0.755,95 \% \mathrm{CL}=0.649-0.877$
Relative biomass in last year $=0.196 \mathrm{k}$, 2.5th perc $=0.158,97.5$ th perc $=0.244$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1$
$\mathrm{q}=1.72, \mathrm{lcl}=1.4, \mathrm{ucl}=2.13$
Results for Management (based on BSM analysis)
Fmsy $=0.408,95 \% C L=0.321-0.518$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.32,95 \% C L=0.252-0.406$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.755,95 \%$ CL $=0.649-0.877$
Bmsy $=1.85,95 \%$ CL $=1.5-2.29$
Biomass in last year $=0.727,2.5$ th perc $=0.586,97.5$ perc $=0.903$
$\mathrm{B} /$ Bmsy in last year $=0.392,2.5$ th perc $=0.316,97.5$ perc $=0.488$
Fishing mortality in last year $=0.409,2.5$ th perc $=0.329,97.5$ perc $=0.507$
F/Fmsy $=1.28,2.5$ th perc $=1.03,97.5$ perc $=1.59$
Stock status and exploitation in 2014
Biomass $=0.699, \mathrm{~B} / \mathrm{Bmsy}=0.377$, fishing mortality $\mathrm{F}=0.573, \mathrm{~F} / \mathrm{Fmsy}=1.86$
Comment: OK (RF 27.09.16)

D: Biomass

Year

F: Equilibrium curve

Species: Nephrops norvegicus, stock: nep-2829
Nephrops in FUs 28 and 29
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/nep-2829.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1984-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 1997 default
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=0.618-9.89$
Prior range of $q=0.00726-0.029$

Results of CMSY analysis with altogether 2065 viable trajectories for 1684 r-k pairs
$r=0.399,95 \% C L=0.294-0.54, k=4.06,95 \% C L=2.64-6.26$
MSY $=0.405,95 \% C L=0.266-0.615$
Relative biomass last year $=0.257 \mathrm{k}, 2.5 \mathrm{th}=0.0214,97.5$ th $=0.396$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.04$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.628,95 \% C L=0.472-0.835, k=2.7,95 \% C L=2.03-3.61$
MSY $=0.424,95 \%$ CL $=0.345-0.521$
Relative biomass in last year $=0.319 \mathrm{k}, 2.5$ th perc $=0.215,97.5$ th perc $=0.427$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.913$
$q=0.0102, \mathrm{lc\mid}=0.0077, \mathrm{ucl}=0.0134$

Results for Management (based on BSM analysis)
Fmsy $=0.314,95 \% C L=0.236-0.417$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.314,95 \% C L=0.236-0.417$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.424,95 \% C L=0.345-0.521$
Bmsy $=1.35$, 95\% CL $=1.01-1.8$
Biomass in last year $=0.862,2.5$ th perc $=0.582,97.5$ perc $=1.15$
$B /$ Bmsy in last year $=0.637,2.5$ th perc $=0.43,97.5$ perc $=0.854$
Fishing mortality in last year $=0.287,2.5$ th perc $=0.214,97.5$ perc $=0.425$
F/Fmsy $=0.913,2.5$ th perc $=0.681,97.5$ perc $=1.35$

Stock status and exploitation in 2014
Biomass $=0.753, \mathrm{~B} / \mathrm{Bmsy}=0.557$, fishing mortality $\mathrm{F}=0.256, \mathrm{~F} / \mathrm{Fmsy}=0.817$
Comment: OK (RF 27.09.16)

D: Biomass

Year

Catch nep-2829

Exploitation

E: Exploitation rate

Year

F: Equilibrium curve

Species: Nephrops norvegicus, stock: Neph-IXa
Nephrops in Division Ixa
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2014/2014/Neph-IXa.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1975-2013 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.2-0.6 in year 1992 expert
Prior final relative biomass $=0.01-0.2$ expert
Prior range for $r=0.2$ - 0.8 default, prior range for $k=3.22-51.5$
Prior range of $q=0.00445-0.0178$

Results of CMSY analysis with altogether 389 viable trajectories for 374 r-k pairs
$r=0.328,95 \% C L=0.218-0.493, k=21.4,95 \% C L=16.6-27.6$
MSY = 1.75, 95\% CL = 1.45-2.12
Relative biomass last year $=0.087 \mathrm{k}, 2.5 \mathrm{th}=0.0116,97.5$ th $=0.193$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.945$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.222,95 \% C L=0.143-0.344, k=28.7,95 \% C L=22.1-37.2$
MSY = 1.59, 95\% CL = 1.07-2.36
Relative biomass in last year $=0.0119 \mathrm{k}, 2.5$ th perc $=0.0109,97.5$ th perc $=0.018$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=6.31$
$q=0.00852, \mathrm{lcl}=0.00656, u c l=0.0111$

Results for Management (based on BSM analysis)
Fmsy $=0.111,95 \% C L=0.0716-0.172$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.00527,95 \% C L=0.0034-0.00816$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=1.59,95 \% C L=1.07-2.36$
Bmsy = 14.3, 95\% CL = 11-18.6
Biomass in last year $=0.34,2.5$ th perc $=0.311,97.5$ perc $=0.515$
B/Bmsy in last year $=0.0237,2.5$ th perc $=0.0217,97.5$ perc $=0.0359$
Fishing mortality in last year $=0.7,2.5$ th perc $=0.462,97.5$ perc $=0.765$
F/Fmsy $=133,2.5$ th perc $=87.7,97.5$ perc $=145$

Stock status and exploitation in 2014
Biomass = , B/Bmsy = , fishing mortality F = , F/Fmsy =
Comment: OK (RF 27.09.16)

E: Exploitation rate

B : Finding viable $r-k$

Year

C: Analysis of viable r-k

D: Biomass

Catch Neph-IXa

F: Equilibrium curve

Species: Nephrops norvegicus, stock: Neph-VIIIab
Nephrops in Divisions VIIIa,b (Bay of Biscay, FUs 23-24)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2014/2014/Neph-VIIIab.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1987-2013 , abundance $=$ None
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass= $0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.2$ - 0.8 default , prior range for $k=20.3-326$

Results of CMSY analysis with altogether 4349 viable trajectories for 2881 r-k pairs
$r=0.553,95 \% C L=0.4-0.764, k=86.3,95 \% C L=55.7-134$
MSY = 11.9, 95\% CL = 9.48-15
Relative biomass last year $=0.284 \mathrm{k}, 2.5 \mathrm{th}=0.0216,97.5$ th $=0.394$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.15$

Results for Management (based on CMSY analysis)
Fmsy $=0.276,95 \% C L=0.2-0.382$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.276,95 \% C L=0.2-0.382$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 11.9, 95\% CL = 9.48-15
Bmsy $=43.2$, $95 \% \mathrm{CL}=27.9-66.9$
Biomass in last year $=24.5,2.5$ th perc $=1.86,97.5$ perc $=34$
$B / B m s y$ in last year $=0.569,2.5$ th perc $=0.0431,97.5$ perc $=0.788$
Fishing mortality in last year $=0.299,2.5$ th perc $=0.216,97.5$ perc $=3.95$
F/Fmsy $=1.08,2.5$ th perc $=0.781,97.5$ perc $=14.3$

Stock status and exploitation in 2014
Biomass = , B/Bmsy = , fishing mortality F = , F/Fmsy =
Comment: OK (RF 27.09.16)

D: Biomass

Exploitation

E: Exploitation rate

F: Equilibrium curve

Species: Nephrops norvegicus, stock: Neph-VIIIc
Nephrops in Division VIIIc (North Galicia and Cantabrian Sea, FUs 25 and 31)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2014/2014/Neph-VIIIc.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1975-2013 , abundance $=$ CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 1990 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=0.914-14.6$
Prior range of $q=0.0357-0.143$

Results of CMSY analysis with altogether 575 viable trajectories for 569 r-k pairs
$r=0.373,95 \% C L=0.29-0.479, k=6.61,95 \% C L=4.88-8.95$
MSY $=0.615,95 \% C L=0.504-0.751$
Relative biomass last year $=0.0801 \mathrm{k}, 2.5 \mathrm{th}=0.0139,97.5 \mathrm{th}=0.265$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.345$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.418,95 \% C L=0.258-0.677, \mathrm{k}=4.09,95 \% \mathrm{CL}=2.75-6.09$
$\mathrm{MSY}=0.428,95 \% \mathrm{CL}=0.26-0.704$
Relative biomass in last year $=0.0317 \mathrm{k}, 2.5$ th perc $=0.0201,97.5$ th perc $=0.0482$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.737$
$q=0.0549, \mathrm{lcl}=0.0427, \mathrm{ucl}=0.0707$

Results for Management (based on BSM analysis)
Fmsy $=0.209,95 \% C L=0.129-0.338$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0265,95 \% C L=0.0164-0.0429$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 0.428, 95\% CL = 0.26-0.704
Bmsy $=2.05$, 95\% CL $=1.38-3.04$
Biomass in last year $=0.13,2.5$ th perc $=0.0823,97.5$ perc $=0.197$
B/Bmsy in last year $=0.0634,2.5$ th perc $=0.0402,97.5$ perc $=0.0964$
Fishing mortality in last year $=0.154,2.5$ th perc $=0.101,97.5$ perc $=0.243$
F/Fmsy $=5.82,2.5$ th perc $=3.82,97.5$ perc $=9.17$

Stock status and exploitation in 2014
Biomass = , B/Bmsy = , fishing mortality F = , F/Fmsy =
Comment: OK (RF 27.09.16)

E: Exploitation rate

Species: Pleuronectes platessa, stock: ple-89a
Plaice in Subarea VIII and Division IXa (Bay of Biscay, Atlantic Iberian Waters)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/ple-89a.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1994-2014 , abundance $=$ None
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.2-0.6 in year 2002 expert
Prior final relative biomass $=0.2-0.6$ expert
Prior range for $r=0.2-0.77$ expert, , prior range for $k=0.518-7.98$

Results of CMSY analysis with altogether 5135 viable trajectories for 1865 r-k pairs
$r=0.549,95 \% C L=0.399-0.754, k=2.08,95 \% C L=1.34-3.22$
MSY $=0.286,95 \%$ CL $=0.226-0.361$
Relative biomass last year $=0.511 \mathrm{k}, 2.5 \mathrm{th}=0.233,97.5 \mathrm{th}=0.597$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.761$

Results for Management (based on CMSY analysis)
Fmsy $=0.274,95 \% C L=0.2-0.377$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.274,95 \% C L=0.2-0.377$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=0.286,95 \% C L=0.226-0.361$
Bmsy $=1.04$, 95\% CL $=0.672-1.61$
Biomass in last year $=1.06,2.5$ th perc $=0.486,97.5$ perc $=1.24$
$B /$ Bmsy in last year $=1.02,2.5$ th perc $=0.467,97.5$ perc $=1.19$
Fishing mortality in last year $=0.207,2.5$ th perc $=0.177,97.5$ perc $=0.453$
F/Fmsy $=0.753,2.5$ th perc $=0.644,97.5$ perc $=1.65$

Stock status and exploitation in 2014
Biomass $=1.06$, $\mathrm{B} / \mathrm{Bmsy}=1.02$, fishing mortality $\mathrm{F}=0.207$, $\mathrm{F} / \mathrm{Fmsy}=0.753$
Comment: OK (RF 27.09.16) r updated

D: Biomass

Year

Catch ple-89a

Exploitation

E: Exploitation rate

F: Equilibrium curve

Biomass

Species: Pollachius pollachius, stock: pol-89a
Pollack in Subarea VIII and Division IXa (Bay of Biscay, Atlantic Iberian Waters)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/pol-89a.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1986-2014 , abundance $=$ None
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 1998 default
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.5-1$ expert, , prior range for $k=2.86-22.9$
Results of CMSY analysis with altogether 424 viable trajectories for 409 r -k pairs
$r=0.714,95 \% C L=0.519-0.982, k=10.5,95 \% C L=8.43-13.2$
MSY = 1.88, 95\% CL = 1.57-2.26
Relative biomass last year $=0.315 \mathrm{k}, 2.5 \mathrm{th}=0.0485,97.5 \mathrm{th}=0.395$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.41$

Results for Management (based on CMSY analysis)
Fmsy $=0.357,95 \% C L=0.259-0.491$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.357,95 \% C L=0.259-0.491$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY $=1.88,95 \% \mathrm{CL}=1.57-2.26$
Bmsy $=5.27,95 \% \mathrm{CL}=4.22-6.58$
Biomass in last year $=3.32,2.5$ th perc $=0.511,97.5$ perc $=4.16$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.63,2.5$ th perc $=0.0971,97.5$ perc $=0.79$
Fishing mortality in last year $=0.597,2.5$ th perc $=0.477,97.5$ perc $=3.88$
F/Fmsy $=1.67,2.5$ th perc $=1.34,97.5$ perc $=10.9$
Stock status and exploitation in 2014
Biomass $=3.32, \mathrm{~B} / \mathrm{Bmsy}=0.63$, fishing mortality $\mathrm{F}=0.597, \mathrm{~F} / \mathrm{Fmsy}=1.67$
Comment: OK (RF 27.09.16)

D: Biomass

Year

F: Equilibrium curve

D: Biomass

Year

Catch rjc-bisc

Year

F: Equilibrium curve

Species: Raja clavata, stock: rjc-bisc
Thornback ray (Raja clavata) in Subarea VIII (Bay of Biscay and Cantabrian Sea)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2014/2014/rjc-bisc.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1999-2013 , abundance = CPUE
Prior initial relative biomass $=0.01-0.3$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2008 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.024-0.9$ expert, , prior range for $k=0.33-49.6$
Prior range of $q=0.000418-0.00512$

Results of CMSY analysis with altogether 12941 viable trajectories for 4456 r-k pairs
$r=0.359,95 \% C L=0.153-0.844, k=8.74,95 \% C L=1.17-65.1$
MSY = 0.784, 95\% CL = 0.0819-7.5
Relative biomass last year $=0.129 \mathrm{k}, 2.5 \mathrm{th}=0.0121,97.5$ th $=0.294$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.47$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.186,95 \% C L=0.0631-0.547, k=6.57,95 \% C L=1.77-24.5$
MSY $=0.305,95 \% \mathrm{CL}=0.061-1.53$
Relative biomass in last year $=0.0734 \mathrm{k}, 2.5$ th perc $=0.0178,97.5$ th perc $=0.264$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=6.67$
$q=0.000917, \mathrm{lcl}=0.000577, u c l=0.00146$

Results for Management (based on BSM analysis)
Fmsy $=0.0928,95 \% C L=0.0315-0.273$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0273,95 \% C L=0.00926-0.0803$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 0.305, 95\% CL = 0.061-1.53
Bmsy $=3.29$, 95\% CL $=0.883-12.2$
Biomass in last year $=0.483$, 2.5th perc $=0.117,97.5$ perc $=1.74$
$B /$ Bmsy in last year $=0.147,2.5$ th perc $=0.0357,97.5$ perc $=0.528$
Fishing mortality in last year $=0.62,2.5$ th perc $=0.172,97.5$ perc $=2.55$
F/Fmsy $=22.7$, 2.5th perc $=6.32,97.5$ perc $=93.5$

Stock status and exploitation in 2014
Biomass = , B/Bmsy = , fishing mortality F = , F/Fmsy =
Comment: OK (RF 27.09.16)

D: Biomass

Year

F: Equilibrium curve

Species: Raja clavata, stock: rjc-pore
Thornback ray (Raja clavata) in Division IXa (west of Galicia, Portugal, and Gulf of Cadiz)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2014/2014/rjc-pore.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 2003-2013 , abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2008 expert
Prior final relative biomass $=0.2$ - 0.6 expert
Prior range for $r=0.024-0.9$ expert, , prior range for $k=0.841-126$
Prior range of $q=0.000157-0.00193$

Results of CMSY analysis with altogether 11320 viable trajectories for 4359 r-k pairs
$r=0.359,95 \% C L=0.153-0.844, k=23.3,95 \% C L=3.89-139$
MSY = 2.09, 95\% CL = 0.335-13
Relative biomass last year $=0.402 \mathrm{k}, 2.5 \mathrm{th}=0.208,97.5$ th $=0.59$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.452$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.366,95 \% C L=0.216-0.62, k=11.3,95 \% C L=5.43-23.3$
MSY = 1.03 , 95\% CL = 0.55-1.93
Relative biomass in last year $=0.369 \mathrm{k}, 2.5$ th perc $=0.207,97.5$ th perc $=0.575$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.924$
$q=0.000383, \mathrm{lcl}=0.000226, u c l=0.000649$

Results for Management (based on BSM analysis)
Fmsy $=0.183,95 \% C L=0.108-0.31$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.183,95 \% C L=0.108-0.31$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 1.03, 95\% CL = 0.55-1.93
Bmsy $=5.63$, 95% CL $=2.71-11.7$
Biomass in last year $=4.15,2.5$ th perc $=2.33,97.5$ perc $=6.47$
$B /$ Bmsy in last year $=0.738,2.5$ th perc $=0.414,97.5$ perc $=1.15$
Fishing mortality in last year $=0.169,2.5$ th perc $=0.109,97.5$ perc $=0.302$
F/Fmsy $=0.924,2.5$ th perc $=0.593,97.5$ perc $=1.65$

Stock status and exploitation in 2014
Biomass = , B/Bmsy = , fishing mortality F = , F/Fmsy =
Comment: OK (RF 27.09.16)

C: Analysis of viable r-k

D: Biomass

Catch rjc-pore

F: Equilibrium curve

Species: Raja brachyura, stock: rjh-pore
Blond ray in Division IXa
Source: Report of WKLIFE IV, ICES CM 2014/ACOM:54
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 2003-2013 , abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= 0.01-0.4 in year 2009 default
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.049-0.85$ expert, , prior range for $k=0.681-47.2$
Prior range of $q=0.00635-0.0529$

Results of CMSY analysis with altogether 13435 viable trajectories for 3777 r-k pairs
$r=0.412,95 \% C L=0.209-0.81, k=5.42,95 \% C L=1.82-16.1$
MSY $=0.558,95 \% \mathrm{CL}=0.248-1.26$
Relative biomass last year $=0.226 \mathrm{k}, 2.5 \mathrm{th}=0.0173,97.5$ th $=0.394$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.795$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.198,95 \% C L=0.108-0.363, k=7.11,95 \% C L=4.54-11.1$
MSY $=0.352,95 \% \mathrm{CL}=0.225-0.553$
Relative biomass in last year $=0.258 \mathrm{k}, 2.5$ th perc $=0.165,97.5$ th perc $=0.386$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.51$
$q=0.0133, \mathrm{lcl}=0.00875, \mathrm{ucl}=0.0201$

Results for Management (based on BSM analysis)
Fmsy $=0.0991,95 \% C L=0.0541-0.181$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.0991,95 \% C L=0.0541-0.181$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.352$, 95% CL $=0.225-0.553$
Bmsy $=3.56$, $95 \% \mathrm{CL}=2.27-5.57$
Biomass in last year $=1.84,2.5$ th perc $=1.18,97.5$ perc $=2.75$
$B / B m s y$ in last year $=0.516,2.5$ th perc $=0.331,97.5$ perc $=0.773$
Fishing mortality in last year $=0.15,2.5$ th perc $=0.1,97.5$ perc $=0.234$
F/Fmsy $=1.51,2.5$ th perc $=1.01,97.5$ perc $=2.36$

Stock status and exploitation in 2014
Biomass $=, \mathrm{B} / \mathrm{Bmsy}=$, fishing mortality $\mathrm{F}=$, $\mathrm{F} / \mathrm{Fmsy}=$
Comment: OK (RF 27.09.16)

D: Biomass

Species: Raja montagui , stock: rjm-pore
Spotted ray (Raja montagui) in Division IXa (west of Galicia, Portugal, and Gulf of Cadiz)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2014/2014/rjm-pore.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 2003-2013, abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01-0.3 in year 2007 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.082-0.85$ expert, , prior range for $k=0.237-9.8$
Prior range of $q=0.000142-0.000912$
Results of CMSY analysis with altogether 5589 viable trajectories for 3385 r -k pairs
$r=0.472,95 \% C L=0.272-0.82, k=3.1,95 \% C L=0.974-9.89$
MSY = 0.366, 95\% CL = 0.111-1.21
Relative biomass last year $=0.201 \mathrm{k}, 2.5$ th $=0.0155,97.5$ th $=0.393$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.894$
Results from Bayesian Schaefer model using catch \& CPUE
$r=0.404,95 \% C L=0.197-0.832, k=2.29,95 \% C L=1.1-4.76$
$\mathrm{MSY}=0.231,95 \% \mathrm{CL}=0.089-0.601$
Relative biomass in last year $=0.222 \mathrm{k}$, 2.5th perc $=0.0522,97.5$ th perc $=0.424$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.6$
$q=0.000294, \mathrm{lcl}=0.000197$, ucl $=0.000439$
Results for Management (based on BSM analysis)
Fmsy $=0.202,95 \% C L=0.0983-0.416$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.18,95 \% C L=0.0873-0.37$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 0.231, 95\% CL = 0.089-0.601
Bmsy $=1.14,95 \% \mathrm{CL}=0.55-2.38$
Biomass in last year $=0.508,2.5$ th perc $=0.119,97.5$ perc $=0.969$
$B /$ Bmsy in last year $=0.444,2.5$ th perc $=0.104,97.5$ perc $=0.848$
Fishing mortality in last year $=0.324,2.5$ th perc $=0.17,97.5$ perc $=1.38$
F/Fmsy $=1.81,2.5$ th perc $=0.947,97.5$ perc $=7.68$
Stock status and exploitation in 2014
Biomass = , B/Bmsy = , fishing mortality F = , F/Fmsy =
Comment: OK (RF 27.09.16)

D: Biomass

Exploitation

E: Exploitation rate

F: Equilibrium curve

Species: Leucoraja naevus, stock: rjn-pore
Cuckoo ray in Division IXa (west of Galicia, Portugal, and Gulf of Cadiz)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2014/2014/rjn-pore.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 2002-2013 , abundance = CPUE
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2009 default
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.09-0.71$ expert, , prior range for $k=0.097-3.06$
Prior range of $q=0.00375-0.0211$

Results of CMSY analysis with altogether 9565 viable trajectories for 3916 r-k pairs
$r=0.421,95 \% C L=0.258-0.687, k=0.87,95 \% C L=0.287-2.64$
MSY $=0.0916,95 \% \mathrm{CL}=0.0272-0.308$
Relative biomass last year $=0.232 \mathrm{k}, 2.5 \mathrm{th}=0.0185,97.5 \mathrm{th}=0.391$
Exploitation $F /(r / 2)$ in last year $=1.14$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.409,95 \% C L=0.255-0.655, k=0.653,95 \% C L=0.368-1.16$
$\mathrm{MSY}=0.0667,95 \% \mathrm{CL}=0.0396-0.112$
Relative biomass in last year $=0.315 \mathrm{k}, 2.5$ th perc $=0.127,97.5$ th perc $=0.451$
Exploitation $F /(r / 2)$ in last year $=0.887$
$q=0.00738, \mathrm{lcl}=0.00513, u c l=0.0106$

Results for Management (based on BSM analysis)
Fmsy $=0.204,95 \% C L=0.128-0.327$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.204,95 \% C L=0.128-0.327$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=0.0667,95 \% C L=0.0396-0.112$
Bmsy $=0.327,95 \% C L=0.184-0.58$
Biomass in last year $=0.206,2.5$ th perc $=0.0827,97.5$ perc $=0.295$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.631,2.5$ th perc $=0.253,97.5$ perc $=0.903$
Fishing mortality in last year $=0.181,2.5$ th perc $=0.126,97.5$ perc $=0.451$
F/Fmsy $=0.887,2.5$ th perc $=0.619,97.5$ perc $=2.21$
Stock status and exploitation in 2014
Biomass = , B/Bmsy = , fishing mortality $\mathrm{F}=$, $\mathrm{F} / \mathrm{Fmsy}=$
Comment: OK (RF 27.09.16)

D: Biomass

E: Exploitation rate

F: Equilibrium curve

Species: Sardina pilchardus, stock: sar-78
Sardine in Divisions VIIIa,b,d and Subarea VII
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/sar-78.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1989-2014 , abundance = CPUE
Prior initial relative biomass $=0.5-0.9$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 2007 expert
Prior final relative biomass $=0.5-0.9$ expert
Prior range for $r=0.27$ - 1.1 expert, , prior range for $k=75-1836$
Prior range of $q=1.39-5.63$

Results of CMSY analysis with altogether 4196 viable trajectories for 750 r-k pairs
$r=0.771,95 \% C L=0.553-1.08, k=185,95 \% C L=123-279$
MSY = 35.7, 95\% CL = 30.6-41.6
Relative biomass last year $=0.571 \mathrm{k}, 2.5 \mathrm{th}=0.504,97.5 \mathrm{th}=0.688$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.01$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.628,95 \% C L=0.401-0.985, k=229,95 \% C L=163-323$
MSY = 36 , 95% CL = 29-44.5
Relative biomass in last year $=0.581 \mathrm{k}, 2.5$ th perc $=0.439,97.5$ th perc $=0.771$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.08$
$\mathrm{q}=2.44, \mathrm{lcl}=1.81, \mathrm{ucl}=3.3$

Results for Management (based on BSM analysis)
Fmsy $=0.314,95 \% C L=0.2-0.493$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.314,95 \% C L=0.2-0.493$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY $=36,95 \%$ CL $=29-44.5$
Bmsy = 115, 95\% CL = 81.3-161
Biomass in last year $=133,2.5$ th perc $=101,97.5$ perc $=177$
$B /$ Bmsy in last year $=1.16,2.5$ th perc $=0.879,97.5$ perc $=1.54$
Fishing mortality in last year $=0.34,2.5$ th perc $=0.257,97.5$ perc $=0.45$
F/Fmsy $=1.08,2.5$ th perc $=0.817,97.5$ perc $=1.43$

Stock status and exploitation in 2014
Biomass = 133 , $\mathrm{B} / \mathrm{Bmsy}=1.16$, fishing mortality $\mathrm{F}=0.34$, F/Fmsy $=1.08$
Comment: OK (RF 27.09.16)

C: Analysis of viable r-k

D: Biomass

F: Equilibrium curve

Species: Sardina pilchardus, stock: sar-soth
Sardine in Divisions VIIIc and IXa
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sar-soth.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1985-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ default
Prior intermediate rel. biomass= $0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.01-0.3$ expert
Prior range for $r=0.27-1.1$ expert, , prior range for $k=189-3081$
Prior range of $q=0.727-2.94$

Results of CMSY analysis with altogether 490 viable trajectories for $479 \mathrm{r}-\mathrm{k}$ pairs
$r=0.466,95 \% C L=0.39-0.557, k=1262,95 \% C L=917-1735$
MSY = 147, 95\% CL = 112-194
Relative biomass last year $=0.143 \mathrm{k}, 2.5 \mathrm{th}=0.016,97.5 \mathrm{th}=0.286$
Exploitation $F /(r / 2)$ in last year $=0.75$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.496,95 \% C L=0.339-0.727, k=1053,95 \% C L=752-1475$
MSY = 131, 95\% CL = 99.7-171
Relative biomass in last year $=0.14 \mathrm{k}, 2.5$ th perc $=0.101,97.5$ th perc $=0.172$
Exploitation $F /(r / 2)$ in last year $=0.576$
$\mathrm{q}=1.12, \mathrm{lcl}=0.873, \mathrm{ucl}=1.43$

Results for Management (based on BSM analysis)
Fmsy $=0.248,95 \% C L=0.169-0.364$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.139,95 \% C L=0.0946-0.203$ (r and Fmsy are linearly reduced if $B<1 / 2 B m s y$)
MSY = 131, 95\% CL = 99.7-171
Bmsy = 526, 95\% CL = 376-737
Biomass in last year $=147,2.5$ th perc $=106,97.5$ perc $=181$
$B /$ Bmsy in last year $=0.279,2.5$ th perc $=0.202,97.5$ perc $=0.345$
Fishing mortality in last year $=0.143,2.5$ th perc $=0.116,97.5$ perc $=0.198$
F/Fmsy $=1.03,2.5$ th perc $=0.835,97.5$ perc $=1.43$

Stock status and exploitation in 2014
Biomass $=127, B / B m s y=0.242$, fishing mortality $F=0.22, F / F m s y=1.83$
Comment: OK (RF 27.09.16)

E: Exploitation rate

Exploitation

Species: Pagellus bogaraveo, stock: sbr-ix
Red (=blackspot) seabream in Subarea 9 (Atlantic Iberian waters)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sbr-ix.pdf
Region: Northeast Atlantic, Bay of Biscay and Iberian coast
Catch data used from years 1988-2015, abundance = CPUE
Prior initial relative biomass $=0.2-0.6$ expert
Prior intermediate rel. biomass= $0.01-0.4$ in year 2000 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.26-0.76$ expert, , prior range for $k=1.26-14.7$
Prior range of $q=0.0122-0.0417$
Results of CMSY analysis with altogether 1998 viable trajectories for 1275 r-k pairs
$r=0.539,95 \% \mathrm{CL}=0.392-0.741, \mathrm{k}=5.19,95 \% \mathrm{CL}=3.85-6.99$
$\mathrm{MSY}=0.7,95 \% \mathrm{CL}=0.612-0.799$
Relative biomass last year $=0.308 \mathrm{k}, 2.5$ th $=0.0293,97.5$ th $=0.396$
Exploitation $F /(r / 2)$ in last year $=0.661$
Results from Bayesian Schaefer model using catch \& CPUE
$\mathrm{r}=0.508,95 \% \mathrm{CL}=0.358-0.722, \mathrm{k}=5.38,95 \% \mathrm{CL}=3.84-7.54$
$\mathrm{MSY}=0.683,95 \% \mathrm{CL}=0.586-0.797$
Relative biomass in last year $=0.238 \mathrm{k}, 2.5$ th perc $=0.122,97.5$ th perc $=0.409$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=0.907$
$\mathrm{q}=0.021, \mathrm{lc\mid}=0.0163$, ucl $=0.027$
Results for Management (based on BSM analysis)
Fmsy $=0.254,95 \% C L=0.179-0.361$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.242,95 \% C L=0.17-0.344$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 0.683, 95\% CL = 0.586-0.797
Bmsy $=2.69,95 \% \mathrm{CL}=1.92-3.77$
Biomass in last year $=1.28,2.5$ th perc $=0.654,97.5$ perc $=2.2$
$B /$ Bmsy in last year $=0.476,2.5$ th perc $=0.243,97.5$ perc $=0.819$
Fishing mortality in last year $=0.23,2.5$ th perc $=0.134,97.5$ perc $=0.451$
F/Fmsy $=0.952,2.5$ th perc $=0.554,97.5$ perc $=1.86$
Stock status and exploitation in 2014
Biomass $=1.17, B /$ Bmsy $=0.435$, fishing mortality $\mathrm{F}=0.224$, $\mathrm{F} / \mathrm{Fmsy}=1.01$
Comment: OK (RF 27.09.16)

E: Exploitation rate

Year

F: Equilibrium curve

Species: Pagellus bogaraveo , stock: sbr-x
Red (=blackspot) seabream (Pagellus bogaraveo) in Subarea 10 (Azores grounds)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sbr-x.pdf
Region: Northeast Atlantic , Azores
Catch data used from years 1988-2015, abundance $=$ None
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.2-0.6 in year 1999 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.26-0.76$ expert, , prior range for $k=1.47-17.2$
Results of CMSY analysis with altogether 2007 viable trajectories for 1439 r -k pairs
$r=0.581,95 \% C L=0.451-0.749, k=7.07,95 \% C L=5.15-9.72$
MSY $=1.03,95 \% \mathrm{CL}=0.907-1.16$
Relative biomass last year $=0.299 \mathrm{k}, 2.5 \mathrm{th}=0.0194,97.5 \mathrm{th}=0.394$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.11$

Results for Management (based on CMSY analysis)
Fmsy $=0.291,95 \% \mathrm{CL}=0.225-0.375$ (if $\mathrm{B}>1 / 2 \mathrm{Bmsy}$ then $\mathrm{Fmsy}=0.5 \mathrm{r}$)
Fmsy $=0.291,95 \% \mathrm{CL}=0.225-0.375$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 1.03, 95\% CL = 0.907-1.16
Bmsy $=3.54,95 \%$ CL $=2.57-4.86$
Biomass in last year $=2.12,2.5$ th perc $=0.137,97.5$ perc $=2.79$
$\mathrm{B} / \mathrm{Bmsy}$ in last year $=0.598,2.5$ th perc $=0.0388,97.5$ perc $=0.789$
Fishing mortality in last year $=0.331,2.5$ th perc $=0.251,97.5$ perc $=5.1$
F/Fmsy $=1.14,2.5$ th perc $=0.865,97.5$ perc $=17.6$
Stock status and exploitation in 2014
Biomass $=1.96, \mathrm{~B} /$ Bmsy $=0.553$, fishing mortality $\mathrm{F}=0.339, \mathrm{~F} / \mathrm{Fmsy}=1.17$
Comment: OK (RF 27.09.16)

D: Biomass

Year

Catch sbr-x

Exploitation

E: Exploitation rate

Year

F: Equilibrium curve

Species: Solea spp , stock: sol-8c9a
Sole (Solea solea, S. senegalensis, and Pegusa lascaris) in ICES areas Divisions VIIIc and IXa (Cantabrian Sea, Atlantic Iberian Waters)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/sol-8c9a.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 2000-2014 , abundance $=$ None
Prior initial relative biomass $=0.01-0.4$ expert
Prior intermediate rel. biomass= 0.01-0.4 in year 2007 default
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.2-0.8$ default , prior range for $k=1.27-20.3$
Results of CMSY analysis with altogether 2180 viable trajectories for 1338 r -k pairs
$r=0.561,95 \% C L=0.405-0.777, k=8.06,95 \% C L=4.39-14.8$
MSY = 1.13, 95\% CL = 0.651-1.96
Relative biomass last year $=0.282 \mathrm{k}, 2.5 \mathrm{th}=0.0318,97.5 \mathrm{th}=0.396$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.27$

Results for Management (based on CMSY analysis)
Fmsy $=0.281,95 \% C L=0.203-0.389$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.281,95 \% C L=0.203-0.389$ (r and Fmsy are linearly reduced if $B<1 / 2$ Bmsy)
MSY = 1.13, 95\% CL = 0.651-1.96
Bmsy $=4.03,95 \% \mathrm{CL}=2.2-7.39$
Biomass in last year $=2.27,2.5$ th perc $=0.256,97.5$ perc $=3.19$
$\mathrm{B} /$ Bmsy in last year $=0.563,2.5$ th perc $=0.0637,97.5$ perc $=0.793$
Fishing mortality in last year $=0.365,2.5$ th perc $=0.26,97.5$ perc $=3.23$
F/Fmsy $=1.3,2.5$ th perc $=0.925,97.5$ perc $=11.5$
Stock status and exploitation in 2014
Biomass $=2.27, \mathrm{~B} / \mathrm{Bmsy}=0.563$, fishing mortality $\mathrm{F}=0.365, \mathrm{~F} / \mathrm{Fmsy}=1.3$
Comment: OK (RF 27.09.16)

D: Biomass

Year

E: Exploitation rate

Year

F: Equilibrium curve

Relative biomass B / k

Catch sol-8c9a

Exploitation

Species: Solea solea, stock: sol-bisc
Sole in Divisions VIIIa,b (Bay of Biscay)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2016/2016/sol-bisc.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1984-2015, abundance = CPUE
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass $=0.01-0.4$ in year 2001 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.21$ - 1 expert, , prior range for $k=6.6-128$
Prior range of $q=0.545-2.4$

Results of CMSY analysis with altogether 3111 viable trajectories for 1853 r-k pairs
$r=0.66,95 \% C L=0.44-0.991, k=32.8,95 \% C L=21.6-49.8$
MSY = 5.41, 95\% CL = 4.89-5.99
Relative biomass last year $=0.31 \mathrm{k}, 2.5 \mathrm{th}=0.0391,97.5 \mathrm{th}=0.396$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.17$

Results from Bayesian Schaefer model using catch \& CPUE
$r=0.577,95 \% C L=0.421-0.792, k=36.2,95 \% C L=26.1-50.1$
MSY = 5.22, 95\% CL = 4.67-5.84
Relative biomass in last year $=0.332 \mathrm{k}, 2.5$ th perc $=0.256,97.5$ th perc $=0.42$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.05$
$\mathrm{q}=0.843, \mathrm{lc\mid}=0.638, \mathrm{ucl}=1.11$

Results for Management (based on BSM analysis)
Fmsy $=0.289,95 \% C L=0.21-0.396$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.289,95 \% C L=0.21-0.396$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY $=5.22,95 \%$ CL $=4.67-5.84$
Bmsy = 18.1, 95\% CL = 13-25.1
Biomass in last year $=12,2.5$ th perc $=9.26,97.5$ perc $=15.2$
$B /$ Bmsy in last year $=0.665,2.5$ th perc $=0.512,97.5$ perc $=0.84$
Fishing mortality in last year $=0.303,2.5$ th perc $=0.24,97.5$ perc $=0.393$
F/Fmsy $=1.05,2.5$ th perc $=0.831,97.5$ perc $=1.36$
Stock status and exploitation in 2014
Biomass $=12.7$, $\mathrm{B} / \mathrm{Bmsy}=0.7$, fishing mortality $\mathrm{F}=0.31$, $\mathrm{F} / \mathrm{Fmsy}=1.08$
Comment: OK (RF 27.09.16)

D: Biomass

Exploitation

E: Exploitation rate

Year

F: Equilibrium curve

Species: Merlangius merlangus, stock: whg-89a
Whiting in Subarea VIII and Division IXa (Bay of Biscay, Atlantic Iberian Waters)
Source: http://www.ices.dk/sites/pub/Publication\ Reports/Advice/2015/2015/whg-89a.pdf
Region: Northeast Atlantic , Bay of Biscay and Iberian coast
Catch data used from years 1994-2014 , abundance $=$ None
Prior initial relative biomass $=0.2$ - 0.6 default
Prior intermediate rel. biomass= $0.01-0.4$ in year 2008 expert
Prior final relative biomass $=0.01-0.4$ expert
Prior range for $r=0.25-1$ expert, , prior range for $k=3.61-58.4$

Results of CMSY analysis with altogether 2251 viable trajectories for 1467 r-k pairs
$r=0.654,95 \% C L=0.445-0.96, k=13.3,95 \% C L=8.35-21.1$
MSY = 2.17, 95\% CL = 1.59-2.96
Relative biomass last year $=0.286 \mathrm{k}, 2.5 \mathrm{th}=0.0266,97.5 \mathrm{th}=0.395$
Exploitation $\mathrm{F} /(\mathrm{r} / 2)$ in last year $=1.56$

Results for Management (based on CMSY analysis)
Fmsy $=0.327,95 \% C L=0.223-0.48$ (if $B>1 / 2$ Bmsy then Fmsy $=0.5 r$)
Fmsy $=0.327,95 \% C L=0.223-0.48$ (r and Fmsy are linearly reduced if $B<1 / 2 \mathrm{Bmsy}$)
MSY = 2.17, 95\% CL = 1.59-2.96
Bmsy $=6.63$, 95\% CL $=4.18-10.5$
Biomass in last year $=3.79$, 2.5th perc $=0.353,97.5$ perc $=5.23$
$B /$ Bmsy in last year $=0.571,2.5$ th perc $=0.0532,97.5$ perc $=0.79$
Fishing mortality in last year $=0.446,2.5$ th perc $=0.323,97.5$ perc $=4.79$
F/Fmsy $=1.37,2.5$ th perc $=0.988,97.5$ perc $=14.7$

Stock status and exploitation in 2014
Biomass $=3.79$, $\mathrm{B} / \mathrm{Bmsy}=0.571$, fishing mortality $\mathrm{F}=0.446, F / F m s y=1.37$
Comment: OK (RF 27.09.16)

D: Biomass

Year
Catch whg-89a

E: Exploitation rate

F: Equilibrium curve

Year
Biomass

